Women Clothing -Predicting Ratings based on Reviews

Finance Group 3

Agenda

Background & Purpose

Analytical Techniques

3

Results - Exploratory Analysis, Sentiment Analysis, Predictive Modelling, Cluster Analysis Conclusion and Future Outlook

Background

- Obtained a dataset from Kaggle detailing customer reviews of women's clothing in e-commerce.
- Data set includes variables such as Clothing ID, Age, Title, Review text, Rating, Recommended IND, Positive feedback count, Division name, Department name, and Class name.

- Improve e-commerce marketing and sales strategy and increase revenue by:
 - Understand the characteristics of reviews
 - Building a predictive model to predict ratings based on customer reviews

Analytical Techniques

- Variables age, product, dept
- Reviews
- ➤ Ratings

Data preparationPredictive Model

Sentinent Analysis

Predictive Modelling

Clustering

- > Bing lexicon
- > NRC sentiment polarity table lexicon
- NRC emotion lexicon
- Sentiment score Afinn lexicon
- ➤ Word clouds top 100, (+) & (-) words

K-meanHierarchical

Results - Exploratory Analysis

Variables

Age group with highest number of reviews

Frequently purchased products

Most reviewed product

Most reviewed department

21 to 40

Dresses, knits & blouses

Review length

Average rating

4.18

Low correlation between length of review and rating.

Reviews & Ratings

Dresses, knits & blouses

Tops

Uppercase

Low correlation between uppercase letters and rating.

Exclamation Mark ! Low correlation between ! and rating, but has a higher impact than uppercase.

Common words

Dress, Size, Love, Fit, Top, Wear, etc. (Excl stop words)

Results - Sentiment Analysis

positive trust joy positive negative anticipation sadness surprise anger negative disgust 20000 40000 25000 50000 75000

positive comfortable ber top soft cute ce love ue ank fall worn loose bust dark stiff ruffle negative 60000

Affin Lexicon

80% of the words used in the reviews are positive.

Bing Lexicon

Positive & Trust emotions have the highest count.

NRC Emotion Lexicon

Word cloud shows green as positive & red as negative words

Word Cloud

loved

pretty

fel

CC sadl

itch

Sentiment score: Mean = 1.71Median = 1.85

Results - Sentiment Analysis (cont.)

As ratings increase, there is a rise in the number of positive words and emotions and a drop in the number of negative words and emotions.

Predictive Modelling - Data Preparation

- 1. Checked for astronomical variables
- 2. Checked for outliers
- 3. Determined correlation among variables
- 4. Removed NA values low percentage of NA entries, therefore did not impute values
- 5. Prepared data for sentiment analysis and rating prediction by:
 - · Created a corpus from the variable 'Review.text' and 'Title'
 - · Used tm_map to transform text to lower case
 - · Removed stop words
 - · Removed punctuation
 - · Removed whitespace
- 6. Created a dictionary
- 7. Used tm_map to stem words
- 8. Created a document term matrix
- 9. Removed sparse items (words that appeared in less than 3% of the reviews)

We have used two text columns for predictive modelling -

- Review.Text
- Title

Predictive Modelling - Results

- Using the CART method, RMSE is 1.009915 for Reviews.Text and 1.075686 for Title.
- Using regression analysis, RMSE is 0.9013822 for Reviews.Text and 1.06697 for Title.
- Review.Text is a better predictor of the ratings given it has a lower RMSE in both instances.
- Regression tree shows the words and how the words used in reviews impact whether the item was returned or not. For example, if the review has the word 'disappoint', there is a 92% chance the item was returned.

Clustering & Predictive Modelling

- For text variables, simple regression was run, the data was normalized.
- For numerical columns, a hierarchical and k-means cluster analysis was run. Based on the plot, a 3-cluster solution looks good.
- After doing the k-means clustering, total SSE plots, ratio plot and silhouette plot, the results were applied to the test set to compare the results.
- The prediction was done for each cluster and then the results were combined.
- The results indicated the following: SSE on Entire data = 2262.32, SSE on Clusters = 1643.99.
- Hence, prediction using clusters is more accurate, as the standard error is less.

Conclusion

Exploratory & Sentinental Analysis

Successfully developed:

- numerous graphical representations of text reviews
- determined correlations between text characteristics and ratings/reviews
- determined positive and negative words and most common words/character.

- Built a predictive model using TF, TF-IDF, Regression, Cart and Trees methods
- Predicted individual ratings for reviews using all the methods

• Predict using tree clusters method as it yields the lowest RMSE and standard error vs non-clusters.

Any questions?

Harsh Dhanuka - <u>hd2457@columbia.edu</u> Arik Shinkarevsky - <u>as5997@columbia.edu</u> Emmanuel Gyeng -<u>emg2232@columbia.edu</u> Rafael Kazandjis - <u>rk3083@columbia.edu</u> Umay Ayyub - <u>ura2001@columbia.edu</u> Qiao Zhou - <u>qz2395@columbia.edu</u> Harshitha Tummalapalli - <u>ht2522@columbia.edu</u>

