
5420 Anomaly Detection, Fall 2020

Assignment 7: Unsupervised Machine Learning II

Submitted by: Harsh Dhanuka, hd2457

Objectives
It is important in any data science project to define the objective as specific as possible. Below let's write it from general to specific. This will direct your
analysis.

Identify hospitals that may abuse the resources or conduct fraud.
Identify hospitals that may abuse the resources or conduct fraud compared to its peers.
Identify hospitals that may abuse the resources or conduct fraud compared to the average (mean, median, etc) of its peers.
Identify hospitals that may abuse the resources or conduct fraud compared to the average (mean, median, etc) of its peers of the same DRG and State.
Identify hospitals that may abuse the resources or conduct fraud through different clustering techniques - Autoencoders, and iForest
Identify hospitals that may abuse the resources or conduct fraud through different clustering techniques - Autoencoders, and iForest, by tuning the hyper
paramters, and using the 'Average' Aggregate method to cross validate and build model stability.

Please click Section 5 to directly go to the Autoencoders, and iForest analysis.

Table of Contents
Section 1: Initial Steps

Section 1: Initial Steps
Section 1.1: Load Data
Section 1.2: Basic Summary Check and considerations

Section 2: Data Cleaning and Preparation

Section 2: Data Cleaning and Preparation
Section 2.1: Rename all column names
Section 2.2: Convert amount variables to appropriate numeric format, strip off the dollar symbol
Section 2.3: Convert Provider_Id to appropriate object format
Section 2.4: Convert Provided_Zip_Code from integer to appropriate Zipcode format
Section 2.5: Check NA's
Section 2.6: Add a new "states" dataset to match Regions with the exising Provider_State variable
Section 2.7: Add Median Income by zipcode dataset to match by zipcode in original dataset

Section 3: EDA of all variables

Section 3: EDA
Section 3.1: Showing the Distribution of X

Section 3.1.1: DRG Definition Distribution
Section 3.1.7: Total Discharges Distribution

Section 3.2: Showing the Distribution of Y by another Categorical Variable X
Section 3.2.1: Average_Total_Payments by DRG_Definition
Section 3.2.5: Total Discharges by Region

Section 3.3: Showing interaction of two or three variables
Section 3.3.1: interaction between Average_Total_Payments and Average_Medicare_Payments
Section 3.3.7: Region wise-distribution of the three numerical variables

I have commented this EDA section as detailed EDA and all the graphs was already shown in previous 2 submissions.

Section 4: Feature Engineering

Section 4: Feature engineering, and explain a potential fraud case using Median Scores
Section 4.1: Popular DSG_Definitions's by state
Section 4.17: Ratio of Total Discharges to Zip_Population

Section 5: Autoencoders, and iForest

Section 5: Modeling
Section 5.1: Autoencoders

Section 5.1.1: Model 1
Section 5.1.2: Model 2
Section 5.1.3: Model 3
Section 5.1.4: Average Aggregation

Section 5.2: iForest
Section 5.2.1: Model 1
Section 5.2.2: Model 2
Section 5.2.3: Model 3
Section 5.2.4: Average Aggregation

Understanding the two methods:

Autoencoders
An autoencoder is a special type of neural network that copies the input values to the output values. It does not require the target variable like the conventional
Y, thus it is categorized as unsupervised learning.

Indeed, we are not so much interested in the output layer. We are interested in the hidden core layer. If the number of neurons in the hidden layers is less than
that of the input layers, the hidden layers will extract the essential information of the input values. This condition forces the hidden layers to learn the most
patterns of the data and ignore the “noises”. So in an autoencoder model, the hidden layers must have fewer dimensions than those of the input or output
layers. If the number of neurons in the hidden layers is more than those of the input layers, the neural network will be given too much capacity to learn the data.
In an extreme case, it could just simply copy the input to the output values, including noises, without extracting any essential information.

iForest
Isolation Forest ot iForest is an anomaly detection algorithm created by Fei Tony Liu et al. They argue that most of the existing approaches to anomaly
detection find the norm first, then identify observations that do not conform to the norm. They propose the Isolation Forest as an alternative approach —
explicitly isolating anomalies instead of profiling normal data points. Anomalies are isolated closer to the root of the tree; whereas normal points are isolated at
the deeper end of the tree. They call each tree the Isolation Tree or iTree. This isolation characteristic of tree forms the basis to detect anomalies.

When we model the data with an iTree, outliers usually have short path lengths on a tree. On the other hands, the bulb of the normal observations requires
many tree branches. So the number of depths becomes a good proxy for the anomaly scores. It is important to note that this iTree algorithm is different from
the decision tree algorithm because iTree does not use a target variable to train the tree. It is an unsupervised learning method.

1. Initial Steps
In [1]: import numpy as np

import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import scipy
import time
import seaborn as sns
sns.set(style="whitegrid")
import warnings
warnings.filterwarnings("ignore")
import missingno as msno

from sklearn.impute import SimpleImputer
from sklearn import metrics
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

from pprint import pprint
import zipcodes

import plotly
import plotly.express as px

from pyod.models.iforest import IForest
from pyod.models.auto_encoder import AutoEncoder
from pyod.models.combination import aom, moa, average, maximization
from pyod.utils.utility import standardizer
from pyod.utils.data import generate_data, get_outliers_inliers
from pyod.utils.data import evaluate_print
from pyod.utils.example import visualize

1.1. Load Data

In [2]: # Read the data

df = pd.read_csv('/Users/harshdhanuka/Desktop/Columbia Class Matter/SEM 3/5420 Anomaly Detection/Assignment 6 PyOD/inp
atientCharges.csv')
df.head()

1.2. Basic Summary Check

In [3]: # Rows and Columns

print(" ")
print("Number of rows and columns in the dataset:")
df.shape

In [4]: print(" ")
print("Basic statistics of the numerical columns are as follows:")

Check basic statistics
df.describe()

In [5]: # Check the column dtypes
df.info()

Considerations from eyeballing the data:
1. Check for categorical/object fields from the data variable descriptions. Convert the relevant numeric fields to their respective categorical/object fields:

Provider Id
2. The Zipcode column is represented as an integer. Convert it to zipcode format.
3. Variable Hospital Referral Region Description comprises of the State and the city, which I see is the nearest metro city.
4. Average Covered Charges is not significant for our analysis, it will be for other purposes such claims fraud, insurance premiums, etc.
5. The two payments columns need to be converted to proper numeric formats.

In [6]: # Basic Sort of Provider ID and DRG Definition

df = df.sort_values(['Provider Id', 'DRG Definition'])
df.head(2)

2. Data Cleaning and Preparation

2.1. Rename all column names
The given column names have a lot of spaces, trailing spaces, etc. I will rename all the columns as per appropriate naming convention.

In [7]: df.columns = ['DRG_Definition', 'Provider_Id', 'Provider_Name',
 'Provider_Street_Address', 'Provider_City', 'Provider_State',
 'Provider_Zip_Code', 'Hospital_Referral_Region_Description',
 'Total_Discharges', 'Average_Covered_Charges',
 'Average_Total_Payments', 'Average_Medicare_Payments']
df.columns

2.2. Convert amount variables to appropriate numeric format, strip off the dollar symbol

In [8]: df["Average_Total_Payments"] = df["Average_Total_Payments"].str[1:].astype(float)
df["Average_Medicare_Payments"] = df["Average_Medicare_Payments"].str[1:].astype(float)
df["Average_Covered_Charges"] = df["Average_Covered_Charges"].str[1:].astype(float)

2.3. Convert Provider_Id to appropriate object format

In [9]: df["Provider_Id"] = df["Provider_Id"].astype(object)

In [10]: df.head(2)

2.4. Convert Provided_Zip_Code from integer to appropriate Zipcode format

In [11]: # Zipcode to 5 character integer zipcode format

df['Provider_Zip_Code'] = df['Provider_Zip_Code'].astype(str).str.zfill(5)

2.5. Check NA's

In [12]: df.isnull().sum().sum()

There are no NA's, which is good for our analysis.

2.6. Add a new "states" dataset to match 'Regions' with the exising Provider_State variable.
Regions will be a a very useful feature when performing the Exploratory Data Analysis.

In [13]: states = pd.read_csv('/Users/harshdhanuka/Desktop/Columbia Class Matter/SEM 3/5420 Anomaly Detection/Assignment 6 PyOD
/states.csv')
states.head(5)

In [14]: # Left join the new dataset

df = pd.merge(left = df, right = states, left_on = 'Provider_State', right_on = 'State Code', how = 'left')
df.head(2)

In [15]: # Remove duplicate 'state' column

df = df.drop(columns = ['State', 'State Code'])

2.7. Add 'Median Income' by zipcode dataset to match by zipcode in original dataset
Dataset source: https://www.psc.isr.umich.edu/dis/census/Features/tract2zip/

This has the zipcode wise mean and median income data for 2006 to 2010

In [16]: income_df = pd.read_excel('/Users/harshdhanuka/Desktop/Columbia Class Matter/SEM 3/5420 Anomaly Detection/Assignment 6
PyOD/MedianZIP-3.xlsx')
income_df['Zip'] = income_df['Zip'].astype(str).str.zfill(5)
income_df.head(3)

In [17]: income_df.isnull().sum()

In [18]: df = pd.merge(left = df, right = income_df, left_on = 'Provider_Zip_Code', right_on = 'Zip', how = 'left')
df = df.drop(columns = ['Zip','Mean'])

df.rename(columns={'Median':'Zip_Median_Income',
 'Pop':'Zip_Population'}, inplace=True)

df.head(2)

.

-------------------------------------- SECTION BREAK ------------------------------------

.

3. EDA

3.1. Showing the Distribution of X

3.1.1. DRG_Definition Distribution
Explore the total number of DRG Definitions, and the count of how many times they appear.

In [19]: df_count = df['DRG_Definition'].value_counts()
df_count = pd.DataFrame(df_count).reset_index()
df_count.columns = ['DRG_Definition','Count']
df_count.head()

In [20]: fig = px.bar(df_count, x = 'DRG_Definition', y = 'Count', color = 'DRG_Definition',
 width=1450, height=500,
 title = "Distribution of DRG Definitions")
fig.show()

Observation:

The DRG Definition has a seemingly good distribution. The counts of DRG Definitons range from around 3000 to 600. All other DRG Definition counts lie within
this range.

Here, any DRG Definition count doesnt seem like an outlier and all behave normally.

3.1.2. Provider_Name Distribution, see popular Providers
Explore the total number Provider Names and the count of how many times each one appears.

In [21]: df_count = df['Provider_Name'].value_counts()
df_count = pd.DataFrame(df_count).reset_index()
df_count.columns = ['Provider_Name','Count']
df_count.head()

In [22]: # Show only those Provider_Names whose total count is above 100

df_count1 = df_count.loc[df_count['Count'] > 100]
fig = px.bar(df_count1, x='Provider_Name', y='Count',
 width=1200, height=500,
 color = 'Provider_Name',
 title = "Distribution of Provider Names, only showing for Count > 100")
fig.show()

In [23]: # Show only those Provider_Names whose total count is below 3

df_count1 = df_count.loc[df_count['Count'] < 3]
fig = px.bar(df_count1, x='Provider_Name', y='Count',
 width=1200, height=500,
 color = 'Provider_Name',
 title = "Distribution of Provider Names, only showing for Count < 3")
fig.show()

Observation:

From the above two count charts, it is clear than some Providers are extremely popular, and have around 600 entries. They seem to be the ones who provide
services under multiple DRG Definitions.

While, some Providers are very unpopular, and have only 1 entry. Now, this depends on the DRG Definition, as some hospitals be a single specialty hospital,
and hence everyone goes there only.

3.1.3. Provider_City Distribution, see popular Cities
Explore the total number Cities and the count of how many times each one appears.

In [24]: df_count = df['Provider_City'].value_counts()
df_count = pd.DataFrame(df_count).reset_index()
df_count.columns = ['Provider_City','Count']
df_count.head()

In [25]: # Show only those Provider_Cities whose total count is above 500

df_count1 = df_count.loc[df_count['Count'] > 500]
fig = px.bar(df_count1, x='Provider_City', y='Count',width=1000, height=500,
 color = 'Provider_City',
 title = "Distribution of Provider Cities, only showing for Count >500")
fig.show()

In [26]: # Show only those Provider_Cities whose total count is below 5

df_count1 = df_count.loc[df_count['Count'] < 5]
fig = px.bar(df_count1, x='Provider_City', y='Count',width=1000, height=500,
 color = 'Provider_City',
 title = "Distribution of Provider Cities, only showing for Count > 5")
fig.show()

Observation:

Chicago is the most popular city with around 1500 entries. There are also a lot of other cities which have only 1 entry.

3.1.4. Provider_State Distribution, see popular States
Explore the total number States and the count of how many times each one appears.

In [27]: df_count = df['Provider_State'].value_counts()
df_count = pd.DataFrame(df_count).reset_index()
df_count.columns = ['Provider_State','Count']
df_count.head()

In [28]: fig = px.bar(df_count, x='Provider_State', y='Count',
 width=1000, height=500,
 color = 'Provider_State',
 title = "Distribution of Provider State")
fig.show()

Observation:

The states seem to have a good distribution. There seems to be no outliers or staes requiring special attention.

3.1.5. Average_Total_Payments Distribution

In [29]: fig = px.histogram(df, x="Average_Total_Payments",
 width=1000, height=500,
 title = "Distribution of Average Total Payments")
fig.show()

In [30]: fig = px.box(df, x="Average_Total_Payments",width=1000, height=500,
 title = "Distribution of Average Total Payments")
fig.show()

In [31]: fig = px.violin(df, y="Average_Total_Payments", box=True,
 points='all',width=800, height=500,
 title = "Distribution of Average Total Payments")
fig.show()

Observation:

Most of the Average payments are less than USD 11,000. So, any average payment above that might be a reason for futher investigation.

There are some extreme high values, more than USD 150,000 which may need investigation.

Median: 7214.1

3.1.6. Average_Medicare_Payments Distribution

In [32]: fig = px.histogram(df, x="Average_Medicare_Payments",
 width=1000, height=500,
 title = "Distribution of Average Medicare Payments")
fig.show()

In [33]: fig = px.box(df, x="Average_Medicare_Payments",width=1000, height=500,
 title = "Distribution of Average Medicare Payments")
fig.show()

Observation:

Most of the Average Medicare payments are less than USD 10,000. So, any average payment above that might be a reason for futher investigation.

There are some extreme high values, more than USD 150,000 which may need investigation.

Median: 6158.46

3.1.7. Total_Discharges Distruibution

In [34]: fig = px.histogram(df, x="Total_Discharges",
 width=800, height=500,
 title = "Distribution of Total Discharges")
fig.show()

In [35]: fig = px.box(df, x="Total_Discharges",width=1000, height=500,
 title = "Distribution of Total Discharges")
fig.show()

Observation:

Most of the Total Discharges are less than 49.

There are some extreme high values, such as 3383, which may need investigation.

Median: 27

3.2. Showing the Distribution of Y by another Categorical Variable X

3.2.1. Average_Total_Payments by DRG_Definition

In [36]: fig = px.box(df, x="DRG_Definition", y="Average_Total_Payments",width=1400, height=500,
 color = "DRG_Definition",
 title = "The Distribution of Average Total Payments by DRG Definition")
fig.show()

Observation:

Some DRG's have a very high Average Total Payments, these may be critical operations, which bear high cost.

3.2.2. Average_Total_Payments by State

In [37]: fig = px.box(df, x="Provider_State", y="Average_Total_Payments",width=1000, height=500,
 color = "Provider_State",
 title = "The Distribution of Average Total Payments by Provider State")
fig.show()

Out[2]:

DRG Definition Provider
Id Provider Name

Provider
Street

Address
Provider City Provider

State

Provider
Zip

Code

Hospital
Referral
Region

Description

Total
Discharges

Average
Covered
Charges

Average
Total

Payments

Average
Medicare

Payments

0
039 - EXTRACRANIAL

PROCEDURES W/O
CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS
CLARK
CIRCLE

DOTHAN AL 36301 AL - Dothan 91 $32963.07 $5777.24 $4763.73

1
039 - EXTRACRANIAL

PROCEDURES W/O
CC/MCC

10005
MARSHALL

MEDICAL
CENTER SOUTH

2505 U S
HIGHWAY

431 NORTH
BOAZ AL 35957 AL -

Birmingham 14 $15131.85 $5787.57 $4976.71

2
039 - EXTRACRANIAL

PROCEDURES W/O
CC/MCC

10006
ELIZA COFFEE

MEMORIAL
HOSPITAL

205
MARENGO

STREET
FLORENCE AL 35631 AL -

Birmingham 24 $37560.37 $5434.95 $4453.79

3
039 - EXTRACRANIAL

PROCEDURES W/O
CC/MCC

10011 ST VINCENT'S
EAST

50 MEDICAL
PARK EAST

DRIVE
BIRMINGHAM AL 35235 AL -

Birmingham 25 $13998.28 $5417.56 $4129.16

4
039 - EXTRACRANIAL

PROCEDURES W/O
CC/MCC

10016
SHELBY
BAPTIST

MEDICAL
CENTER

1000 FIRST
STREET
NORTH

ALABASTER AL 35007 AL -
Birmingham 18 $31633.27 $5658.33 $4851.44

Out[3]:

Number of rows and columns in the dataset:

(163065, 12)

Out[4]:

Basic statistics of the numerical columns are as follows:

Provider Id Provider Zip Code Total Discharges

count 163065.000000 163065.000000 163065.000000

mean 255569.865428 47938.121908 42.776304

std 151563.671767 27854.323080 51.104042

min 10001.000000 1040.000000 11.000000

25% 110092.000000 27261.000000 17.000000

50% 250007.000000 44309.000000 27.000000

75% 380075.000000 72901.000000 49.000000

max 670077.000000 99835.000000 3383.000000

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 163065 entries, 0 to 163064
Data columns (total 12 columns):
DRG Definition 163065 non-null object
Provider Id 163065 non-null int64
Provider Name 163065 non-null object
Provider Street Address 163065 non-null object
Provider City 163065 non-null object
Provider State 163065 non-null object
Provider Zip Code 163065 non-null int64
Hospital Referral Region Description 163065 non-null object
 Total Discharges 163065 non-null int64
 Average Covered Charges 163065 non-null object
 Average Total Payments 163065 non-null object
Average Medicare Payments 163065 non-null object
dtypes: int64(3), object(9)
memory usage: 14.9+ MB

Out[6]:

DRG Definition Provider
Id Provider Name

Provider
Street

Address

Provider
City

Provider
State

Provider
Zip

Code

Hospital
Referral
Region

Description

Total
Discharges

Average
Covered
Charges

Average
Total

Payments

Average
Medicare

Payments

0
039 - EXTRACRANIAL

PROCEDURES W/O
CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108
ROSS

CLARK
CIRCLE

DOTHAN AL 36301 AL - Dothan 91 $32963.07 $5777.24 $4763.73

1079
057 - DEGENERATIVE

NERVOUS SYSTEM
DISORDERS W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108
ROSS

CLARK
CIRCLE

DOTHAN AL 36301 AL - Dothan 38 $20312.78 $4894.76 $3865.50

Out[7]: Index(['DRG_Definition', 'Provider_Id', 'Provider_Name',
 'Provider_Street_Address', 'Provider_City', 'Provider_State',
 'Provider_Zip_Code', 'Hospital_Referral_Region_Description',
 'Total_Discharges', 'Average_Covered_Charges', 'Average_Total_Payments',
 'Average_Medicare_Payments'],
 dtype='object')

Out[10]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan

1079

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan

Out[12]: 0

Out[13]:
State State Code Region Division

0 Alaska AK West Pacific

1 Alabama AL South East South Central

2 Arkansas AR South West South Central

3 Arizona AZ West Mountain

4 California CA West Pacific

Out[14]:

DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

Out[16]:
Zip Median Mean Pop

0 01001 56662.5735 66687.8 16445

1 01002 49853.4177 75062.6 28069

2 01003 28462.0000 35121 8491

Out[17]: Zip 0
Median 0
Mean 0
Pop 0
dtype: int64

Out[18]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

Out[19]:
DRG_Definition Count

0 194 - SIMPLE PNEUMONIA & PLEURISY W CC 3023

1 690 - KIDNEY & URINARY TRACT INFECTIONS W/O MCC 2989

2 292 - HEART FAILURE & SHOCK W CC 2953

3 392 - ESOPHAGITIS, GASTROENT & MISC DIGEST DIS... 2950

4 641 - MISC DISORDERS OF NUTRITION,METABOLISM,F... 2899

194 - S
IM

PLE PN
EU

M
O

N
IA

 &
 PLEU

R
IS

Y W
 C

C
292 - H

EA
R
T FA

ILU
R
E &

 S
H

O
C
K
 W

 C
C

641 - M
IS

C
 D

IS
O

R
D

ER
S
 O

F N
U

TR
ITIO

N
,M

ETA
B
O

LIS
M

,FLU
ID

S
/ELEC

TR
O

LYTES
 W

/O
 M

C
C

603 - C
ELLU

LITIS
 W

/O
 M

C
C

191 - C
H

R
O

N
IC

 O
B
S
TR

U
C
TIV

E PU
LM

O
N

A
R
Y D

IS
EA

S
E W

 C
C

291 - H
EA

R
T FA

ILU
R
E &

 S
H

O
C
K
 W

 M
C
C

195 - S
IM

PLE PN
EU

M
O

N
IA

 &
 PLEU

R
IS

Y W
/O

 C
C
/M

C
C

378 - G
.I. H

EM
O

R
R
H

A
G

E W
 C

C
683 - R

EN
A
L FA

ILU
R
E W

 C
C

310 - C
A
R
D

IA
C
 A

R
R
H

YTH
M

IA
 &

 C
O

N
D

U
C
TIO

N
 D

IS
O

R
D

ER
S
 W

/O
 C

C
/M

C
C

812 - R
ED

 B
LO

O
D

 C
ELL D

IS
O

R
D

ER
S
 W

/O
 M

C
C

065 - IN
TR

A
C
R
A
N

IA
L H

EM
O

R
R
H

A
G

E O
R
 C

ER
EB

R
A
L IN

FA
R
C
TIO

N
 W

 C
C

682 - R
EN

A
L FA

ILU
R
E W

 M
C
C

481 - H
IP &

 FEM
U

R
 PR

O
C
ED

U
R
ES

 EX
C
EPT M

A
JO

R
 JO

IN
T W

 C
C

069 - TR
A
N

S
IEN

T IS
C
H

EM
IA

689 - K
ID

N
EY &

 U
R
IN

A
R
Y TR

A
C
T IN

FEC
TIO

N
S
 W

 M
C
C

280 - A
C
U

TE M
YO

C
A
R
D

IA
L IN

FA
R
C
TIO

N
, D

IS
C
H

A
R
G

ED
 A

LIV
E W

 M
C
C

638 - D
IA

B
ETES

 W
 C

C
552 - M

ED
IC

A
L B

A
C
K
 PR

O
B
LEM

S
 W

/O
 M

C
C

389 - G
.I. O

B
S
TR

U
C
TIO

N
 W

 C
C

287 - C
IR

C
U

LATO
R
Y D

IS
O

R
D

ER
S
 EX

C
EPT A

M
I, W

 C
A
R
D

 C
ATH

 W
/O

 M
C
C

377 - G
.I. H

EM
O

R
R
H

A
G

E W
 M

C
C

101 - S
EIZ

U
R
ES

 W
/O

 M
C
C

281 - A
C
U

TE M
YO

C
A
R
D

IA
L IN

FA
R
C
TIO

N
, D

IS
C
H

A
R
G

ED
 A

LIV
E W

 C
C

394 - O
TH

ER
 D

IG
ES

TIV
E S

YS
TEM

 D
IA

G
N

O
S
ES

 W
 C

C
329 - M

A
JO

R
 S

M
A
LL &

 LA
R
G

E B
O

W
EL PR

O
C
ED

U
R
ES

 W
 M

C
C

390 - G
.I. O

B
S
TR

U
C
TIO

N
 W

/O
 C

C
/M

C
C

176 - PU
LM

O
N

A
R
Y EM

B
O

LIS
M

 W
/O

 M
C
C

918 - PO
IS

O
N

IN
G

 &
 TO

X
IC

 EFFEC
TS

 O
F D

R
U

G
S
 W

/O
 M

C
C

460 - S
PIN

A
L FU

S
IO

N
 EX

C
EPT C

ER
V
IC

A
L W

/O
 M

C
C

372 - M
A
JO

R
 G

A
S
TR

O
IN

TES
TIN

A
L D

IS
O

R
D

ER
S
 &

 PER
ITO

N
EA

L IN
FEC

TIO
N

S
 W

 C
C

057 - D
EG

EN
ER

ATIV
E N

ER
V
O

U
S
 S

YS
TEM

 D
IS

O
R
D

ER
S
 W

/O
 M

C
C

252 - O
TH

ER
 V

A
S
C
U

LA
R
 PR

O
C
ED

U
R
ES

 W
 M

C
C

536 - FR
A
C
TU

R
ES

 O
F H

IP &
 PELV

IS
 W

/O
 M

C
C

305 - H
YPER

TEN
S
IO

N
 W

/O
 M

C
C

039 - EX
TR

A
C
R
A
N

IA
L PR

O
C
ED

U
R
ES

 W
/O

 C
C
/M

C
C

238 - M
A
JO

R
 C

A
R
D

IO
V
A
S
C
 PR

O
C
ED

U
R
ES

 W
/O

 M
C
C

684 - R
EN

A
L FA

ILU
R
E W

/O
 C

C
/M

C
C

563 - FX
, S

PR
N

, S
TR

N
 &

 D
IS

L EX
C
EPT FEM

U
R
, H

IP, PELV
IS

 &
 TH

IG
H

 W
/O

 M
C
C

491 - B
A
C
K
 &

 N
EC

K
 PR

O
C
 EX

C
 S

PIN
A
L FU

S
IO

N
 W

/O
 C

C
/M

C
C

249 - PER
C
 C

A
R
D

IO
V
A
S
C
 PR

O
C
 W

 N
O

N
-D

R
U

G
-ELU

TIN
G

 S
TEN

T W
/O

 M
C
C

602 - C
ELLU

LITIS
 W

 M
C
C

469 - M
A
JO

R
 JO

IN
T R

EPLA
C
EM

EN
T O

R
 R

EATTA
C
H

M
EN

T O
F LO

W
ER

 EX
TR

EM
ITY W

 M
C
C

254 - O
TH

ER
 V

A
S
C
U

LA
R
 PR

O
C
ED

U
R
ES

 W
/O

 C
C
/M

C
C

246 - PER
C
 C

A
R
D

IO
V
A
S
C
 PR

O
C
 W

 D
R
U

G
-ELU

TIN
G

 S
TEN

T W
 M

C
C
 O

R
 4+

 V
ES

S
ELS

/S
TEN

TS
897 - A

LC
O

H
O

L/D
R
U

G
 A

B
U

S
E O

R
 D

EPEN
D

EN
C
E W

/O
 R

EH
A
B
ILITATIO

N
 TH

ER
A
PY W

/O
 M

C
C

301 - PER
IPH

ER
A
L V

A
S
C
U

LA
R
 D

IS
O

R
D

ER
S
 W

/O
 C

C
/M

C
C

419 - LA
PA

R
O

S
C
O

PIC
 C

H
O

LEC
YS

TEC
TO

M
Y W

/O
 C

.D
.E. W

/O
 C

C
/M

C
C

473 - C
ER

V
IC

A
L S

PIN
A
L FU

S
IO

N
 W

/O
 C

C
/M

C
C

251 - PER
C
 C

A
R
D

IO
V
A
S
C
 PR

O
C
 W

/O
 C

O
R
O

N
A
R
Y A

R
TER

Y S
TEN

T W
/O

 M
C
C

0

500

1000

1500

2000

2500

3000 DRG_Definition
194 - SIMPLE PNEUMONIA & PLEURISY W CC
690 - KIDNEY & URINARY TRACT INFECTIONS W/O MCC
292 - HEART FAILURE & SHOCK W CC
392 - ESOPHAGITIS, GASTROENT & MISC DIGEST DISORDERS W/O MCC
641 - MISC DISORDERS OF NUTRITION,METABOLISM,FLUIDS/ELECTROLYTES W/O MCC
871 - SEPTICEMIA OR SEVERE SEPSIS W/O MV 96+ HOURS W MCC
603 - CELLULITIS W/O MCC
470 - MAJOR JOINT REPLACEMENT OR REATTACHMENT OF LOWER EXTREMITY W/O MCC
191 - CHRONIC OBSTRUCTIVE PULMONARY DISEASE W CC
190 - CHRONIC OBSTRUCTIVE PULMONARY DISEASE W MCC
291 - HEART FAILURE & SHOCK W MCC
192 - CHRONIC OBSTRUCTIVE PULMONARY DISEASE W/O CC/MCC
195 - SIMPLE PNEUMONIA & PLEURISY W/O CC/MCC
193 - SIMPLE PNEUMONIA & PLEURISY W MCC
378 - G.I. HEMORRHAGE W CC
293 - HEART FAILURE & SHOCK W/O CC/MCC
683 - RENAL FAILURE W CC
872 - SEPTICEMIA OR SEVERE SEPSIS W/O MV 96+ HOURS W/O MCC
310 - CARDIAC ARRHYTHMIA & CONDUCTION DISORDERS W/O CC/MCC
309 - CARDIAC ARRHYTHMIA & CONDUCTION DISORDERS W CC
812 - RED BLOOD CELL DISORDERS W/O MCC

Distribution of DRG Definitions

DRG_Definition

C
ou

nt

Out[21]:
Provider_Name Count

0 GOOD SAMARITAN HOSPITAL 633

1 ST JOSEPH MEDICAL CENTER 427

2 MERCY MEDICAL CENTER 357

3 MERCY HOSPITAL 347

4 ST JOSEPH HOSPITAL 343

G
O

O
D

 S
A
M

A
R
ITA

N
 H

O
S
PITA

L

M
ER

C
Y M

ED
IC

A
L C

EN
TER

S
T JO

S
EPH

 H
O

S
PITA

L

S
T M

A
R
Y M

ED
IC

A
L C

EN
TER

S
T FR

A
N

C
IS

 H
O

S
PITA

L

M
EM

O
R
IA

L H
O

S
PITA

L

S
T JO

S
EPH

'S
 H

O
S
PITA

L

B
A
PTIS

T M
ED

IC
A
L C

EN
TER

PR
ES

B
YTER

IA
N

 H
O

S
PITA

L

N
O

R
TH

W
ES

T M
ED

IC
A
L C

EN
TER

M
ER

C
Y R

EG
IO

N
A
L M

ED
IC

A
L C

EN
TER

B
A
PTIS

T H
O

S
PITA

L

W
ES

LEY M
ED

IC
A
L C

EN
TER

C
H

R
IS

T H
O

S
PITA

L

S
A
C
R
ED

 H
EA

R
T H

O
S
PITA

L

G
O

O
D

 S
A
M

A
R
ITA

N
 M

ED
IC

A
L C

EN
TER

S
T A

LEX
IU

S
 M

ED
IC

A
L C

EN
TER

U
N

IV
ER

S
ITY M

ED
IC

A
L C

EN
TER

H
EA

R
TLA

N
D

 R
EG

IO
N

A
L M

ED
IC

A
L C

EN
TER

M
ETH

O
D

IS
T H

O
S
PITA

L

S
T LU

K
ES

 R
EG

IO
N

A
L M

ED
IC

A
L C

EN
TER

YO
R
K
 H

O
S
PITA

L

S
O

U
TH

 S
H

O
R
E H

O
S
PITA

L

JO
H

N
S
TO

N
 M

EM
O

R
IA

L H
O

S
PITA

L

N
O

R
TH

S
ID

E H
O

S
PITA

L

M
A
R
IO

N
 G

EN
ER

A
L H

O
S
PITA

L

C
EN

TEN
N

IA
L M

ED
IC

A
L C

EN
TER

A
D

V
EN

TIS
T M

ED
IC

A
L C

EN
TER

TR
IN

ITY M
ED

IC
A
L C

EN
TER

0

100

200

300

400

500

600

Provider_Name
GOOD SAMARITAN HOSPITAL
ST JOSEPH MEDICAL CENTER
MERCY MEDICAL CENTER
MERCY HOSPITAL
ST JOSEPH HOSPITAL
ST FRANCIS MEDICAL CENTER
ST MARY MEDICAL CENTER
ST LUKES HOSPITAL
ST FRANCIS HOSPITAL
JEFFERSON REGIONAL MEDICAL CENTER
MEMORIAL HOSPITAL
ST MARY'S MEDICAL CENTER
ST JOSEPH'S HOSPITAL
DOCTORS HOSPITAL
BAPTIST MEDICAL CENTER
ST VINCENT'S MEDICAL CENTER
PRESBYTERIAN HOSPITAL
COMMUNITY MEDICAL CENTER
NORTHWEST MEDICAL CENTER
NORTH SHORE MEDICAL CENTER
MERCY REGIONAL MEDICAL CENTER

Distribution of Provider Names, only showing for Count > 100

Provider_Name

C
ou

nt

Out[24]:
Provider_City Count

0 CHICAGO 1505

1 BALTIMORE 1059

2 HOUSTON 950

3 PHILADELPHIA 898

4 BROOKLYN 877

Out[27]:
Provider_State Count

0 CA 13064

1 TX 11864

2 FL 11155

3 NY 9178

4 IL 7909

0 20k 40k 60k 80k 100k 120k 140k 160k

Distribution of Average Total Payments

Average_Total_Payments

039 - EX
TR

A
C
R
A
N

IA
L PR

O
C
ED

U
R
ES

 W
/O

 C
C
/M

C
C

065 - IN
TR

A
C
R
A
N

IA
L H

EM
O

R
R
H

A
G

E O
R
 C

ER
EB

R
A
L IN

FA
R
C
TIO

N
 W

 C
C

074 - C
R
A
N

IA
L &

 PER
IPH

ER
A
L N

ER
V
E D

IS
O

R
D

ER
S
 W

/O
 M

C
C

177 - R
ES

PIR
ATO

R
Y IN

FEC
TIO

N
S
 &

 IN
FLA

M
M

ATIO
N

S
 W

 M
C
C

190 - C
H

R
O

N
IC

 O
B
S
TR

U
C
TIV

E PU
LM

O
N

A
R
Y D

IS
EA

S
E W

 M
C
C

193 - S
IM

PLE PN
EU

M
O

N
IA

 &
 PLEU

R
IS

Y W
 M

C
C

202 - B
R
O

N
C
H

ITIS
 &

 A
S
TH

M
A
 W

 C
C
/M

C
C

238 - M
A
JO

R
 C

A
R
D

IO
V
A
S
C
 PR

O
C
ED

U
R
ES

 W
/O

 M
C
C

246 - PER
C
 C

A
R
D

IO
V
A
S
C
 PR

O
C
 W

 D
R
U

G
-ELU

TIN
G

 S
TEN

T W
 M

C
C
 O

R
 4+

 V
ES

S
ELS

/S
TEN

TS

251 - PER
C
 C

A
R
D

IO
V
A
S
C
 PR

O
C
 W

/O
 C

O
R
O

N
A
R
Y A

R
TER

Y S
TEN

T W
/O

 M
C
C

254 - O
TH

ER
 V

A
S
C
U

LA
R
 PR

O
C
ED

U
R
ES

 W
/O

 C
C
/M

C
C

282 - A
C
U

TE M
YO

C
A
R
D

IA
L IN

FA
R
C
TIO

N
, D

IS
C
H

A
R
G

ED
 A

LIV
E W

/O
 C

C
/M

C
C

291 - H
EA

R
T FA

ILU
R
E &

 S
H

O
C
K
 W

 M
C
C

300 - PER
IPH

ER
A
L V

A
S
C
U

LA
R
 D

IS
O

R
D

ER
S
 W

 C
C

308 - C
A
R
D

IA
C
 A

R
R
H

YTH
M

IA
 &

 C
O

N
D

U
C
TIO

N
 D

IS
O

R
D

ER
S
 W

 M
C
C

312 - S
YN

C
O

PE &
 C

O
LLA

PS
E

315 - O
TH

ER
 C

IR
C
U

LATO
R
Y S

YS
TEM

 D
IA

G
N

O
S
ES

 W
 C

C

372 - M
A
JO

R
 G

A
S
TR

O
IN

TES
TIN

A
L D

IS
O

R
D

ER
S
 &

 PER
ITO

N
EA

L IN
FEC

TIO
N

S
 W

 C
C

389 - G
.I. O

B
S
TR

U
C
TIO

N
 W

 C
C

392 - ES
O

PH
A
G

ITIS
, G

A
S
TR

O
EN

T &
 M

IS
C
 D

IG
ES

T D
IS

O
R
D

ER
S
 W

/O
 M

C
C

419 - LA
PA

R
O

S
C
O

PIC
 C

H
O

LEC
YS

TEC
TO

M
Y W

/O
 C

.D
.E. W

/O
 C

C
/M

C
C

470 - M
A
JO

R
 JO

IN
T R

EPLA
C
EM

EN
T O

R
 R

EATTA
C
H

M
EN

T O
F LO

W
ER

 EX
TR

EM
ITY W

/O
 M

C
C

481 - H
IP &

 FEM
U

R
 PR

O
C
ED

U
R
ES

 EX
C
EPT M

A
JO

R
 JO

IN
T W

 C
C

602 - C
ELLU

LITIS
 W

 M
C
C

640 - M
IS

C
 D

IS
O

R
D

ER
S
 O

F N
U

TR
ITIO

N
,M

ETA
B
O

LIS
M

,FLU
ID

S
/ELEC

TR
O

LYTES
 W

 M
C
C

683 - R
EN

A
L FA

ILU
R
E W

 C
C

690 - K
ID

N
EY &

 U
R
IN

A
R
Y TR

A
C
T IN

FEC
TIO

N
S
 W

/O
 M

C
C

811 - R
ED

 B
LO

O
D

 C
ELL D

IS
O

R
D

ER
S
 W

 M
C
C

870 - S
EPTIC

EM
IA

 O
R
 S

EV
ER

E S
EPS

IS
 W

 M
V
 96+

 H
O

U
R
S

885 - PS
YC

H
O

S
ES

918 - PO
IS

O
N

IN
G

 &
 TO

X
IC

 EFFEC
TS

 O
F D

R
U

G
S
 W

/O
 M

C
C

203 - B
R
O

N
C
H

ITIS
 &

 A
S
TH

M
A
 W

/O
 C

C
/M

C
C

482 - H
IP &

 FEM
U

R
 PR

O
C
ED

U
R
ES

 EX
C
EPT M

A
JO

R
 JO

IN
T W

/O
 C

C
/M

C
C

149 - D
YS

EQ
U

ILIB
R
IU

M

0

20k

40k

60k

80k

100k

120k

140k

160k DRG_Definition
039 - EXTRACRANIAL PROCEDURES W/O CC/MCC
057 - DEGENERATIVE NERVOUS SYSTEM DISORDERS W/O MCC
064 - INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W MCC
065 - INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W CC
066 - INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W/O CC/MCC
069 - TRANSIENT ISCHEMIA
074 - CRANIAL & PERIPHERAL NERVE DISORDERS W/O MCC
101 - SEIZURES W/O MCC
176 - PULMONARY EMBOLISM W/O MCC
177 - RESPIRATORY INFECTIONS & INFLAMMATIONS W MCC
178 - RESPIRATORY INFECTIONS & INFLAMMATIONS W CC
189 - PULMONARY EDEMA & RESPIRATORY FAILURE
190 - CHRONIC OBSTRUCTIVE PULMONARY DISEASE W MCC
191 - CHRONIC OBSTRUCTIVE PULMONARY DISEASE W CC
192 - CHRONIC OBSTRUCTIVE PULMONARY DISEASE W/O CC/MCC
193 - SIMPLE PNEUMONIA & PLEURISY W MCC
194 - SIMPLE PNEUMONIA & PLEURISY W CC
195 - SIMPLE PNEUMONIA & PLEURISY W/O CC/MCC
202 - BRONCHITIS & ASTHMA W CC/MCC
207 - RESPIRATORY SYSTEM DIAGNOSIS W VENTILATOR SUPPORT 96+ HOURS
208 - RESPIRATORY SYSTEM DIAGNOSIS W VENTILATOR SUPPORT <96 HOURS

The Distribution of Average Total Payments by DRG Definition

DRG_Definition

A
ve

ra
ge

_T
ot

al
_P

ay
m

en
ts

Observation:

The Average Total Payments are more or less similar, but some states such as NY and CA are very expensiove overall.

3.2.3. Average_Total_Payments by Region

In [38]: fig = px.box(df, x="Region", y="Average_Total_Payments",width=1000, height=500,
 color = "Region",
 title = "The Distribution of Average Total Payments by Region")
fig.show()

In [39]: # px.violin(df,x='Average_Total_Payments', y = "Region", color='Region',
title = "The Distribution of Average Total Payments by Region",
orientation='h').update_traces(side='positive',width=2)

Observation:

The West region seems to be generally high in terms of Total Average Payments. This was verified earlier as we saw the state CA was extremely high as well.

It is followed by Northeast, which includes the state NY.

3.2.4. Total_Discharges by DRG_Definition

In [40]: fig = px.box(df, x="DRG_Definition", y="Total_Discharges",width=1400, height=500,
 color = "DRG_Definition",
 title = "The Distribution of Total Discharges by DRG Definition")
fig.show()

Observation:

The Discharge rate for some DRG's is very high, while most others have a balanced discharged rate.

3.2.5. Total_Discharges by Region

In [41]: fig = px.box(df, x="Region", y="Total_Discharges",width=1000, height=500,
 color = "Region",
 title = "The Distribution of Total Discharges by Region")
fig.show()

In [42]: # px.violin(df,x='Total_Discharges', y = "Region", color='Region',
title = "The Distribution of Total Discharges by Region",
orientation='h').update_traces(side='positive',width=2)

Observation:

Most regions have a similar total discharged pattern. However, the Northeast region has an outlier.

3.3. Showing interaction of two or three variables

3.3.1. See interaction between Average_Total_Payments and Average_Medicare_Payments

In [43]: fig = px.scatter(df, x="Average_Total_Payments", y="Average_Medicare_Payments",
 size = "Average_Total_Payments", color = 'Average_Total_Payments',
 size_max=60,width=800, height=600)
fig.show()

Observation:

As the average total payments increase, the average medicare payments also increase, which shows that there is a very high collinearity between these two
variables.

3.3.2. Understand features such as mean, median, min, max, etc of Average_Total_Payments

I will group the entire data by DRG_Definition and then calculate the statistics for each group overall.

In [44]: agg_columns = ['mean', 'median', 'var', 'std', 'count', 'min', 'max']
groupby_drg = df[['DRG_Definition', 'Average_Total_Payments']].groupby(by='DRG_Definition').agg(agg_columns)

groupby_drg.columns = [header + '-' + agg_column
 for header, agg_column in zip(groupby_drg.columns.get_level_values(0), agg_columns)]

groupby_drg.columns = groupby_drg.columns.get_level_values(0)

In [45]: groupby_drg.reset_index(inplace=True)
groupby_drg['Average_Total_Payments-range'] = groupby_drg['Average_Total_Payments-max'] - groupby_drg['Average_Total_P
ayments-min']

groupby_drg.head(2)

In [46]: def plt_setup(_plt):
 _plt.tick_params(
 axis='x', # changes apply to the x-axis
 which='both', # both major and minor ticks are affected
 bottom='off', # ticks along the bottom edge are off
 top='off', # ticks along the top edge are off
 labelbottom='off')

See the 'mean' of the respective DRG_Definition groups

In [47]: plt.figure(figsize=(20,8))
sns.barplot(x='DRG_Definition', y='Average_Total_Payments-mean',
data=groupby_drg.sort_values('Average_Total_Payments-mean'))
plt_setup(plt)
plt.title('Mean Average Total Payments by DRG', fontsize=16)
plt.ylabel('Mean of Average Total Payments', fontsize=16)

Observation:

Some DRG groups have very high mean, which implies that there are some DRG groups which generally charge a very high amount for treatment in terms of
'Total Payments'.

3.3.3. Sum of Average Total Payments by DRG_Definition

In [48]: pyt_by_drg = df.groupby('DRG_Definition').sum().reset_index()

In [49]: pyt_by_drg = pyt_by_drg.sort_values('Average_Total_Payments', ascending=False)
pyt_by_drg.head()

In [50]: # Extract only rows with amount > 40,000,000

pyt_by_drg = pyt_by_drg.loc[pyt_by_drg['Average_Total_Payments'] > 40000000]

In [51]: # plt.figure(figsize=(20,4))
fig = sns.barplot(x='DRG_Definition', y='Average_Total_Payments',
data=pyt_by_drg)
fig.set_xticklabels(fig.get_xticklabels(), rotation=15)

plt.title('Mean Average Total Payments by DRG, for total > 40,000,000', fontsize=16)
plt.ylabel('Mean of Average Total Payments', fontsize=16)

Observation:

The DRG 329 is the highest in terms of total sum fom the Average Total Payments.

3.3.4. Unique ids, unique names, and unique cities for Providers

In [52]: unique_ids = len(df.groupby('Provider_Id').count())
unique_providers = len(df.groupby('Provider_Name').count())
unique_cities = len(df.groupby('Provider_City').count())
unique_states = len(df.groupby('Provider_State').count())

print(" ")
print(f'There are {unique_ids} unique provider id values in the data, and {unique_providers} unique provider names in
a total of {unique_cities} unique cities, and {unique_states} states.')
print(" ")

3.3.5. Check correlations between the three numerical/integer variables, region wise

In [53]: fig = sns.pairplot(df[['Region', 'Total_Discharges', 'Average_Total_Payments','Average_Medicare_Payments']],
 hue= 'Region')
fig

In [54]: corr = df[['Total_Discharges', 'Average_Total_Payments', 'Average_Medicare_Payments']].corr()
f,ax = plt.subplots(figsize=(7,5))
sns.heatmap(corr, annot=True, cmap='Reds', linewidths=.4, fmt= '.1f',ax=ax)
plt.show()

Observation:

From above graphs, there are some variables that are highly correlated such as Average Total Payment and Average Medicare Payment. Average total payment
has a long tail distribution, which could indicate potential fraud.

From corr matrix: Total payment is correlated with medicare payment.

We can conclude that those variables are indeed related, for modeling purposes, it more make sense to include only one or two of the three variables.

3.3.6. State wise-distribution of the three numerical variables

In [55]: plt.figure(figsize=(20,20))
g = sns.PairGrid(df,
 x_vars = ['Total_Discharges', 'Average_Total_Payments', 'Average_Medicare_Payments'],
 y_vars = ['Provider_State'],
 height=10, aspect=.25)

Draw plot
g.map(sns.stripplot, size=10, orient="h",
 palette="ch:s=1,r=-.1,h=1_r", linewidth=1.10, edgecolor="w")

Use the same x axis limits on all columns and add better labels
g.set(xlabel="", ylabel="")

titles = ["Total Discharges", "Average Total Payments",
 "Average Medicare Paymens"]

for ax, title in zip(g.axes.flat, titles):

 # Set a different title for each axes
 ax.set(title = title)

 # Make the grid horizontal instead of vertical
 ax.xaxis.grid(False)
 ax.yaxis.grid(True)

plt.tight_layout()
plt.show()

3.3.7. Region wise-distribution of the three numerical variables

In [56]: #plt.figure(figsize=(20,20))
#g = sns.PairGrid(df,
x_vars = ['Total_Discharges', 'Average_Total_Payments', 'Average_Medicare_Payments'],
y_vars = ['Region'],
height=10, aspect=.25)

Draw plot
#g.map(sns.stripplot, size=10, orient="h",
palette="ch:s=1,r=-.1,h=1_r", linewidth=1.10, edgecolor="w")

Use the same x axis limits on all columns and add better labels
#g.set(xlabel="", ylabel="")

#titles = ["Total Discharges", "Average Total Payments",
"Average Medicare Paymens"]

#for ax, title in zip(g.axes.flat, titles):

 # Set a different title for each axes
ax.set(title = title)

 # Make the grid horizontal instead of vertical
ax.xaxis.grid(False)
ax.yaxis.grid(True)

plt.tight_layout()
plt.show()

.

-------------------------------------- SECTION BREAK --------------------------------------

.

4. Feature Engineering

Feature 1

4.1. Popular DSG_Definitions's by state
By understanding the top DSG's per state, we esablish a baseline for what people in the state normally get treated for. This information is useful in one of two
ways:

Can be used to flag non-common and expensive procedures
Focus fraud detection on the common procedures.

Assuming that the fraudulent users would try to get treated for the same conditions as the population.

In [57]: drg_by_state = df.groupby(['Provider_State', 'DRG_Definition']).agg({'DRG_Definition': 'count'})
drg_by_state.head()

In [58]: drg_by_state.tail()

Note:

I am not merging this with the original dataset as this is a new data table created to be used as a reference to check the most common DRG's by state

Feature 2

4.2. Number of Provider_Names per city
This information can be used in one of two ways:

Assuming that the city with the most providers have a higher probablity of being a victim fraud. It allows to focus on the cities with the highest
concentration.
Assuming the cities with the lowest provider per population densitity are a higher risk. The reason is that fraudsters have less options to cheat, and they
are forced to choose from a select few.

In [59]: providers_per_city = df.groupby(['Provider_City']).agg({'Provider_Name':'count'})
providers_per_city.head()

In [60]: fig = plt.figure(figsize=(10,7))
providers_per_city.sort_values(by = 'Provider_Name', ascending = False).head()
sns.distplot(providers_per_city)
plt.tight_layout()

Note:

I am not merging this with the original dataset as this is a new data table created to be used as a reference to check the most common hospitals.

Feature 3

4.3. Average cost per procedure/treatment
Assuming that people/hospitals would likely cheat on the most expensive procedures, this feature would allow us to focus on the ones that would have the
highest likelihood.

In [61]: df['Average_Cost_Per_Procedure'] = df['Average_Total_Payments']/df['Total_Discharges']
df.head(2)

In [62]: fig = plt.figure(figsize=(15,7))
plt.boxplot(df['Average_Cost_Per_Procedure'], vert=False)
plt.title('Averate Cost Per Procedure')
plt.xlabel("Cost in $")
plt.tight_layout()

Feature 4

4.4. Average Medicare Payments, converted to % of Average Total Payments
Medicare % paid varies by states, hospitals, and procedure. This feature will allow us to determing which hospitals, treatment and procedures are viewed
favorably by medicare.

In [63]: df['Medicare_%_Paid'] = df['Average_Medicare_Payments']/df['Average_Total_Payments']
df.head(2)

In [64]: fig = plt.figure(figsize=(15,7))
sns.boxplot(df['Medicare_%_Paid'])
plt.title('Percentage of Average Total Payments Paid by Medicare (Average)')
plt.tight_layout()

Observation:

Most average medicare payments are around 80-90% of the average total payments.

Feature 5

4.5. Medicare Payments, converted to % of Average Total Payments, State-wise
I am trying to understand if there are any states with 99% and greater medicare payout averages. Hypothesis is that those states are more attractive for fraud.

In [65]: medicare_pct_state = df.groupby('Provider_State').agg({'Medicare_%_Paid': 'mean'}).reset_index()
medicare_pct_state.head(5)

In [66]: df = pd.merge(left = df, right = medicare_pct_state, left_on = 'Provider_State', right_on = 'Provider_State',
 how = 'left')

df.rename(columns = {'Medicare_%_Paid_x':'Medicare_%_Paid',
 'Medicare_%_Paid_y':'Medicare_%_Paid_State'}, inplace=True)

df.head(2)

In [67]: fig = px.scatter(df, x="Provider_State", y="Medicare_%_Paid_State", width=1000, height=500,
 color = "Provider_State",
 title = "Medicare % Paid Distribution (by State)")
fig.show()

In [68]: #fig = plt.figure(figsize=(15,7))
#sns.distplot(df['Medicare_%_Paid_State'])
#plt.title('Medicare % Paid Distribution (by State)')
#plt.tight_layout()

Feature 6

4.6. Out-of-pocket expense, difference between 'Average_Total_Payments' & 'Average_Medicare_Payments'
Out of pocket highlight procedures/treatments that are most expensive. The hypothesis is that the procedures with the highest out of pocket cost are the least
likely to be a target for fraud.

In [69]: df['Out_of_Pocket_Payment'] = df['Average_Total_Payments'] - df['Average_Medicare_Payments']
df.head(2)

In [70]: sorted_avg_out_of_pocket = df.groupby(['DRG_Definition']).agg({'Out_of_Pocket_Payment': 'mean'})
sorted_avg_out_of_pocket.sort_values(by = 'Out_of_Pocket_Payment',ascending=False).head()

In [71]: fig = plt.figure(figsize=(15,7))
sns.distplot(df['Out_of_Pocket_Payment'])
plt.title('Medicare_%_Paid_Distribution_by_State')
plt.tight_layout()

Feature 7

4.7. Out-of-Pocket expense per discharge
Hospital that have high out of pocket cost can be useful to narrow down the ones unattractive to fraudsters.

In [72]: df['Out_of_Pocket_per_discharge'] = df['Out_of_Pocket_Payment']/df['Total_Discharges']
df.head(2)

Out[45]:

DRG_Definition Average_Total_Payments-
mean

Average_Total_Payments-
median

Average_Total_Payments-
var

Average_Total_Payments-
std

Average_Total_Payments-
count

Average_Total_Payments-
min

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

6960.534004 6582.89 2.184111e+06 1477.873952 1079 4968.00

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

6706.276445 6093.75 4.137017e+06 2033.965862 1201 4194.09

Out[47]: Text(0, 0.5, 'Mean of Average Total Payments')

There are 3337 unique provider id values in the data, and 3201 unique provider names in a total of 1977 unique cities
, and 51 states.

Out[53]: <seaborn.axisgrid.PairGrid at 0x7f7ecb59b050>

Out[54]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ecb59b390>

<Figure size 1440x1440 with 0 Axes>

Out[57]:
DRG_Definition

Provider_State DRG_Definition

AK

039 - EXTRACRANIAL PROCEDURES W/O CC/MCC 1

057 - DEGENERATIVE NERVOUS SYSTEM DISORDERS W/O MCC 1

064 - INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W MCC 2

065 - INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W CC 6

066 - INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W/O CC/MCC 4

Out[58]:
DRG_Definition

Provider_State DRG_Definition

WY

872 - SEPTICEMIA OR SEVERE SEPSIS W/O MV 96+ HOURS W/O MCC 2

897 - ALCOHOL/DRUG ABUSE OR DEPENDENCE W/O REHABILITATION THERAPY W/O MCC 1

917 - POISONING & TOXIC EFFECTS OF DRUGS W MCC 1

918 - POISONING & TOXIC EFFECTS OF DRUGS W/O MCC 2

948 - SIGNS & SYMPTOMS W/O MCC 3

Out[59]:
Provider_Name

Provider_City

ABBEVILLE 18

ABERDEEN 107

ABILENE 152

ABINGDON 63

ABINGTON 99

Out[61]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

Out[63]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

Out[65]:
Provider_State Medicare_%_Paid

0 AK 0.871982

1 AL 0.816622

2 AR 0.834876

3 AZ 0.842718

4 CA 0.885084

Out[66]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

AL AZ CA CT DC GA ID IN KS LA MD MI MS MT NV NJ NY ND OK PA SC TN UT VA WV WY
0.78

0.8

0.82

0.84

0.86

0.88

Provider_State
AL
AK
AZ
AR
CA
CO
CT
DE
DC
FL
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MD

Medicare % Paid Distribution (by State)

Provider_State

M
ed

ic
ar

e_
%

_P
ai

d_
S
ta

te

Out[69]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

Out[70]:
Out_of_Pocket_Payment

DRG_Definition

460 - SPINAL FUSION EXCEPT CERVICAL W/O MCC 3735.070150

473 - CERVICAL SPINAL FUSION W/O CC/MCC 2594.714232

247 - PERC CARDIOVASC PROC W DRUG-ELUTING STENT W/O MCC 2582.521719

207 - RESPIRATORY SYSTEM DIAGNOSIS W VENTILATOR SUPPORT 96+ HOURS 2559.372528

853 - INFECTIOUS & PARASITIC DISEASES W O.R. PROCEDURE W MCC 2497.221490

Out[72]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 21 columns

In [73]: fig = plt.figure(figsize=(15,7))
sns.distplot(df['Out_of_Pocket_per_discharge'])
plt.tight_layout()

Feature 8

4.8. Total treatments per state
The nomimal amount of treatments per state can be a misleading number to look at, given that the states with the most people will bubble to the top. This
feature can be useful when compared against the population.

In [74]: patients_states = df['Provider_State'].value_counts()
patients_states = pd.DataFrame(patients_states).reset_index()
patients_states.columns = ['Provider_State','Count']
patients_states.head()

In [75]: df = pd.merge(left = df, right = patients_states, left_on = 'Provider_State', right_on = 'Provider_State',
 how = 'left')

df.rename(columns = {'Count':'State_Total'}, inplace=True)

df.head(2)

In [76]: fig = px.scatter(df, x="Provider_State", y="State_Total", width=1000, height=500,
 color = "Provider_State",
 title = "Total Procedures/Treatments per state")
fig.show()

In [77]: #fig = plt.figure(figsize=(15,7))
#sns.distplot(df['State_Total'])
#plt.tight_layout()

Feature 9

4.9. Average treatments/patients by State (mean values, as grouped by State)
States have differents norms and rules. This features allows us to capture the normal state of each. Result can also be used to compare against the mean.

In [78]: patient_avg_state = df.groupby('Provider_State').mean()[['Total_Discharges',
 'Average_Total_Payments',
 'Average_Medicare_Payments']].reset_index()
patient_avg_state.head()

In [79]: patient_avg_state.loc[:,'Total_Discharges':'Average_Medicare_Payments'].corr()

In [80]: fig = plt.figure(figsize=(15,10))

plt.subplot(2, 2, 1)
plt.boxplot(patient_avg_state['Total_Discharges'])
plt.title('Total Disharge Box plot')
plt.xlabel('')

plt.subplot(2, 2, 3)
plt.boxplot(patient_avg_state['Average_Total_Payments'])
plt.title('Average Total Payment Boxplot')
plt.xlabel('')

plt.subplot(2, 2, 4)
plt.boxplot(patient_avg_state['Average_Medicare_Payments'])
plt.title('Average Medicare Payment Boxplot')
plt.tight_layout()
plt.show()

In [81]: # States with highest discharges

patient_avg_state.sort_values(by = 'Total_Discharges', ascending = False).head()

In [82]: # States with highest Average Total Payments

patient_avg_state.sort_values(by = 'Average_Total_Payments', ascending = False).head()

Note:

These new mean columns are useful, but I believe Median columns will be more handy. So, I will not add the mean columns to the original dataset yet.

Feature 10

4.10. Calculate the median of average total payment amount by DRG, by state.

'Median Average Total Payment'
To catch payments for treaments that exceed a normal amount, I will first create a feature that calculates a score for each data row. The score will indicate the
size the payment amount for a particular treament relative to the median size of the payment amount for the DRG code by state level.

In [83]: median_drg_state = df.groupby(['DRG_Definition','Provider_State'])['Average_Total_Payments'].median().reset_index()
median_drg_state.head()

In [84]: df = pd.merge(left = df, right = median_drg_state, left_on = ['DRG_Definition','Provider_State'], right_on = ['DRG_Def
inition','Provider_State'], how = 'left')
df.rename(columns={'Average_Total_Payments_y':'Median_Avg_Total_Pyt',
 'Average_Total_Payments_x':'Average_Total_Payments'}, inplace=True)
df.head(2)

In [85]: # Check for one particular state and one particular DRG, to see median

df[(df['Provider_State'] == 'NV') & (df['DRG_Definition'] == '194 - SIMPLE PNEUMONIA & PLEURISY W CC')].head(2)

Feature 11

4.11. Creating a common median multiple score for Average Total Payments

Explain a potential fraud case

'Median Score`
I will now take the average total payment and divide it by the median payment to generate a simple score that indicates how many times the current payment
amount is larger than the median amount.

In [86]: df['Median_Score'] = df['Average_Total_Payments']/df['Median_Avg_Total_Pyt']
df.head(2)

In [87]: # fig = plt.figure(figsize=(10,5))
sns.distplot(df['Median_Score'])
plt.tight_layout()

In [88]: fig = plt.figure(figsize=(15,5))
sns.boxplot(df['Median_Score'])
plt.tight_layout()

In [89]: df['Median_Score'].describe()

Observation:

It would appear that most treatment payment amounts for the same DRG within the same state are within 90% to 110% of the median price. This is expected
as normally doctors should be charging similar prices for similar treatment in simlar areas. However, we see instances where the payment amount is many
times that of the median.

As we see in the box plot above, in two specific cases, treament cost over 9 times the median amount.

Let us investigate further.

Below are the cases where the payment made was over 6 times the median score amount.

In [90]: df[df['Median_Score'] >= 6]

Observation:

The highest median score is 9.33 which is for:

index number - 69869
DRG - 203 - BRONCHITIS & ASTHMA W/O CC/MCC
City - ATTLEBORO
State - MA

This individual was charged USD 41,482 for a treament that had median amount of just USD 4,441.92. This particular treatment was performed at Provider -
STURDY MEMORIAL HOSPITAL.

Now, Let's examine this particular hospital more closely.

In [91]: suspect_hospital1 = df[df['Provider_Name'] == 'STURDY MEMORIAL HOSPITAL']['Median_Score']

fig = plt.figure(figsize=(14,5))
sns.distplot(suspect_hospital1)
plt.tight_layout()

print(" ")
print("Median Score distribution for Provider - STURDY MEMORIAL HOSPITAL is as follows")
print(" ")
print(suspect_hospital1.describe())

Observation:

The graphical representation is strange. The hospital typically charges less than the median amount for its treatments as we see that the highest number of
observations fall beloew the median score of 1. This makes the treament with the median mulitple score of over 9 highly unusal.

Now, another hospital with a treatment which cost way over the median amount is 'ST JOSEPH MEDICAL CENTER', which is:

index number - 125467
DRG - 189 - PULMONARY EDEMA & RESPIRATORY FAILURE
City - READING
State - PA

Lets examine this hosptial's track record too.

In [92]: suspect_hospital2 = df[df['Provider_Name'] == 'ST JOSEPH MEDICAL CENTER']['Median_Score']

fig = plt.figure(figsize=(14,5))
sns.distplot(suspect_hospital2)
plt.tight_layout()

print(" ")
print("Median Score distribution for Provider - ST JOSEPH MEDICAL CENTER is as follows")
print(" ")
print(suspect_hospital2.describe())

Observation:

Again, this is a hospital that typically charges resonable prices for treatment, most observations are below the median score of 2, which is fine. But, this makes
the one treatment that is over 9 times the median price an extreme outlier deserving of extra attention.

Making the broad assumption that around 1% of medical payments are fraudulent. I will tag any medical treatment that paid more than the top 99th percentile
of median_scores in the dataset.

In [93]: np.percentile(df['Median_Score'], 99)

1% of medical treatments cost more than 1.79 times the median payment of that treament by state. Treaments that paid more than this shall be flagged.

Feature 12

4.12. Boolean Flag for Providers, based on the Median Score, if not in 99% percentile of data.

'Median Score Flag'
To catch payments for treaments that exceed a normal amount, I will first create a feature that calculates a score for each data row. The score will indicate the
size the payment amount for a particular treament relative to the median size of the payment amount for the DRG code by state level.

In [94]: df['Median_Score_Flag'] = df['Median_Score'] >= np.percentile(df['Median_Score'], 99)
df.head(2)

This approach is good for finding providers that overcharge substancially. However, it is not so useful in find hospitals that overcharge slightly but over the
course of many treatments. One way to find these providers is to find which ones have the highest average median_score.

Feature 13

4.13. Calculate the Median Score, this time based in individual Provider level, previously we did on individual row
level.

'Median Score by Provider'
To catch payments for treaments that exceed a normal amount, I will first create a feature that calculates a score for each data row. The score will indicate the
size the payment amount for a particular treament relative to the median size of the payment amount for the DRG code by state level.

In [95]: Median_Score_by_Provider = df.groupby(['Provider_Name']).mean()['Median_Score'].reset_index()
print(Median_Score_by_Provider.head(2))

fig = plt.figure(figsize=(10,5))
sns.distplot(Median_Score_by_Provider['Median_Score'])
plt.tight_layout()

print(" ")
print("Median Score distribution for Provider - is as follows")
print(" ")
print(Median_Score_by_Provider.describe())

Some providers consistantly charge multiple times the median payment amount. However, before we blow the horn on these hospitals, we have to consider the
fact that perhaps these hospitals are charging more than their state counter parts because they are either high-end/luxury hosptials and/or they are located in
expensive cities. Lets see what hospitals these are.

In [96]: df = pd.merge(left = df, right = Median_Score_by_Provider, left_on = 'Provider_Name',
 right_on = 'Provider_Name', how = 'left')

df.rename(columns={'Median_Score_x':'Median_Score',
 'Median_Score_y':'Median_Score_by_Provider'}, inplace=True)
df.head(2)

Display the hospitals, that on average charge more than double the median price for the treatments they provide copmared to others within their
state.

I had expected these hospitals to either be luxury hospitals or located in expensive cities.

In [97]: df[df['Median_Score_by_Provider'] >= 2][['Provider_Name', 'Provider_State','Provider_City']].drop_duplicates()

Feature 14

4.14. Create a boolean benchmark for hospitals who overcharge

'Provider Flag by Median Score'
I set the benchmark at an upper level of 2 or higher median score, this will avoid situations where the cost of the city impacts the cost of treatment as even in
the most expensive cities, the average cost of treament will in an expensive city will never be double the average cost of treament outside the city within the
same state.

In [98]: df['Provider_Flag_by_Median_Score'] = df['Median_Score_by_Provider'] >= 2
df.head(2)

See a the list of providers that are flagged as their treamtent payments are on average, more than double the median amount for the state they are
in.

In [99]: df[df['Provider_Flag_by_Median_Score']][['Provider_Id','Provider_Name','Provider_City',
 'Provider_State','Median_Score_by_Provider']].drop_duplicates()

I will now pick the hospital with the highest score, which is - CANCER TREATMENT CENTERS OF AMERICA.

Now, I assume this hospital constantly overcharges on procedures that are much cheaper in other hospitals within the same state. Lets see it below.

In [100]: df[df['Provider_Name'] == 'MEMORIAL HOSPITAL LOS BANOS'][['Median_Score']]

Observation:

As we see, this is an effective method to track and find hospitals who overcharge or committ fraud.

Feature 15

4.15. Sum total of 'Total Discharged' grouped by the Provider Id and Provider Name
I will check the grand total of the number of discharges made by ech Provider. The hypothesis is that the hospitals with the highest number of diacharges are
more susceptible to fraud, having false patients and fake claims.

In [101]: discharges_provider = df.groupby(['Provider_Id','Provider_Name'])['Total_Discharges'].sum().reset_index(name='Grand To
tal of Discharges')
discharges_provider = discharges_provider.sort_values(by='Grand Total of Discharges', ascending=False)
discharges_provider.head()

Observation:

It is seen that the highest discharges are by 'Florida Hospital', at 25,828.

However, it would be ideal to check the total discharges as group be Provider State to get better inference.

In [102]: discharges_provider_state = df.groupby(['Provider_State','Provider_Id', 'Provider_Name'])['Total_Discharges'].sum().re
set_index(name='Grand Total of Discharges')
discharges_provider_state = discharges_provider_state.sort_values(by='Grand Total of Discharges', ascending=False)
discharges_provider_state.head()

Out[74]:
Provider_State Count

0 CA 13064

1 TX 11864

2 FL 11155

3 NY 9178

4 IL 7909

Out[75]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 22 columns

AL AZ CA CT DC GA ID IN KS LA MD MI MS MT NV NJ NY ND OK PA SC TN UT VA WV WY

0

2k

4k

6k

8k

10k

12k

Provider_State
AL
AK
AZ
AR
CA
CO
CT
DE
DC
FL
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MD

Total Procedures/Treatments per state

Provider_State

S
ta

te
_T

ot
al

Out[78]:
Provider_State Total_Discharges Average_Total_Payments Average_Medicare_Payments

0 AK 26.588745 14572.391732 12958.969437

1 AL 39.258322 7568.232149 6418.007120

2 AR 41.978229 8019.248805 6919.720832

3 AZ 36.690284 10154.528211 8825.717240

4 CA 36.357854 12629.668472 11494.381678

Out[79]:
Total_Discharges Average_Total_Payments Average_Medicare_Payments

Total_Discharges 1.000000 -0.124043 -0.060745

Average_Total_Payments -0.124043 1.000000 0.991735

Average_Medicare_Payments -0.060745 0.991735 1.000000

Out[81]:
Provider_State Total_Discharges Average_Total_Payments Average_Medicare_Payments

8 DE 67.901015 10360.072411 8959.673274

22 MI 54.539952 9754.420406 8662.157756

31 NJ 52.052839 10678.988647 9586.940056

20 MD 51.955255 12608.947664 11480.121829

27 NC 51.043841 9089.435711 7998.649702

Out[82]:
Provider_State Total_Discharges Average_Total_Payments Average_Medicare_Payments

0 AK 26.588745 14572.391732 12958.969437

7 DC 43.954545 12998.029416 11811.967706

11 HI 26.497738 12775.739525 10967.475045

4 CA 36.357854 12629.668472 11494.381678

20 MD 51.955255 12608.947664 11480.121829

Out[83]:
DRG_Definition Provider_State Average_Total_Payments

0 039 - EXTRACRANIAL PROCEDURES W/O CC/MCC AK 8401.95

1 039 - EXTRACRANIAL PROCEDURES W/O CC/MCC AL 5658.33

2 039 - EXTRACRANIAL PROCEDURES W/O CC/MCC AR 5890.00

3 039 - EXTRACRANIAL PROCEDURES W/O CC/MCC AZ 6959.89

4 039 - EXTRACRANIAL PROCEDURES W/O CC/MCC CA 7863.14

Out[84]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 23 columns

Out[85]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description

89303
194 - SIMPLE

PNEUMONIA &
PLEURISY W

CC
290001

RENOWN
REGIONAL

MEDICAL
CENTER

1155 MILL STREET RENO NV 89502 NV - Reno

89400
194 - SIMPLE

PNEUMONIA &
PLEURISY W

CC
290003

SUNRISE
HOSPITAL AND

MEDICAL
CENTER

3186 S MARYLAND
PKWY LAS VEGAS NV 89109 NV - Las Vegas

2 rows × 23 columns

Out[86]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 24 columns

Out[89]: count 163065.000000
mean 1.050746
std 0.211465
min 0.517695
25% 0.925511
50% 1.000000
75% 1.112126
max 9.338775
Name: Median_Score, dtype: float64

Out[90]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description

69869
203 -

BRONCHITIS &
ASTHMA W/O

CC/MCC
220008

STURDY
MEMORIAL
HOSPITAL

211 PARK STREET ATTLEBORO MA 02703 RI - Providence

125467

189 -
PULMONARY

EDEMA &
RESPIRATORY

FAILURE

390096
ST JOSEPH

MEDICAL
CENTER

2500 BERNVILLE ROAD READING PA 19605 PA - Reading

130307
948 - SIGNS &

SYMPTOMS
W/O MCC

390312
CANCER

TREATMENT
CENTERS OF

AMERICA

1331 EAST WYOMING
AVENUE PHILADELPHIA PA 19124 PA - Philadelphia

156606

249 - PERC
CARDIOVASC

PROC W NON-
DRUG-

ELUTING ...

500051
OVERLAKE
HOSPITAL
MEDICAL
CENTER

1035-116TH AVE NE BELLEVUE WA 98004 WA - Seattle

4 rows × 24 columns

Median Score distribution for Provider - STURDY MEMORIAL HOSPITAL is as follows

count 69.000000
mean 1.027317
std 1.016937
min 0.786568
25% 0.873115
50% 0.903796
75% 0.928759
max 9.338775
Name: Median_Score, dtype: float64

Median Score distribution for Provider - ST JOSEPH MEDICAL CENTER is as follows

count 427.000000
mean 1.060935
std 0.424824
min 0.720824
25% 0.933857
50% 1.007073
75% 1.099725
max 9.150067
Name: Median_Score, dtype: float64

Out[93]: 1.790032745554255

Out[94]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 25 columns

 Provider_Name Median_Score
0 ABBEVILLE GENERAL HOSPITAL 1.033378
1 ABBOTT NORTHWESTERN HOSPITAL 1.056686

Median Score distribution for Provider - is as follows

 Median_Score
count 3201.000000
mean 1.043923
std 0.200934
min 0.635737
25% 0.927984
50% 0.995734
75% 1.096960
max 3.777786

Out[96]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 26 columns

Out[97]:
Provider_Name Provider_State Provider_City

15017 CONTRA COSTA REGIONAL MEDICAL CENTER CA MARTINEZ

19110 MEMORIAL HOSPITAL LOS BANOS CA LOS BANOS

23176 KEEFE MEMORIAL HOSPITAL CO CHEYENNE WELLS

23353 VAIL VALLEY MEDICAL CENTER CO VAIL

27595 JACKSON MEMORIAL HOSPITAL FL MIAMI

46304 MIDWESTERN REGION MED CENTER IL ZION

96910 GUADALUPE COUNTY HOSPITAL NM SANTA ROSA

130305 CANCER TREATMENT CENTERS OF AMERICA PA PHILADELPHIA

138799 UNIVERSITY OF TEXAS MEDICAL BRANCH GAL TX GALVESTON

159340 WELCH COMMUNITY HOSPITAL WV WELCH

Out[98]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 27 columns

Out[99]:
Provider_Id Provider_Name Provider_City Provider_State Median_Score_by_Provider

15017 50276 CONTRA COSTA REGIONAL MEDICAL CENTER MARTINEZ CA 2.254486

19110 50528 MEMORIAL HOSPITAL LOS BANOS LOS BANOS CA 2.508609

23176 60043 KEEFE MEMORIAL HOSPITAL CHEYENNE WELLS CO 2.376034

23353 60096 VAIL VALLEY MEDICAL CENTER VAIL CO 2.030422

27595 100022 JACKSON MEMORIAL HOSPITAL MIAMI FL 2.173011

46304 140100 MIDWESTERN REGION MED CENTER ZION IL 2.861803

96910 320067 GUADALUPE COUNTY HOSPITAL SANTA ROSA NM 2.187486

130305 390312 CANCER TREATMENT CENTERS OF AMERICA PHILADELPHIA PA 3.777786

138799 450018 UNIVERSITY OF TEXAS MEDICAL BRANCH GAL GALVESTON TX 2.336738

159340 510086 WELCH COMMUNITY HOSPITAL WELCH WV 2.085069

Out[100]:
Median_Score

19110 2.624709

19111 2.473714

19112 2.490096

19113 2.748748

19114 2.305088

19115 2.489811

19116 2.471841

19117 2.464865

Out[101]:
Provider_Id Provider_Name Grand Total of Discharges

599 100007 FLORIDA HOSPITAL 25828

1970 330101 NEW YORK-PRESBYTERIAN HOSPITAL 16834

2882 450388 METHODIST HOSPITAL 15921

583 80001 CHRISTIANA CARE HEALTH SERVICES, INC. 14542

1534 230130 WILLIAM BEAUMONT HOSPITAL 14469

Out[102]:
Provider_State Provider_Id Provider_Name Grand Total of Discharges

599 FL 100007 FLORIDA HOSPITAL 25828

2065 NY 330101 NEW YORK-PRESBYTERIAN HOSPITAL 16834

2882 TX 450388 METHODIST HOSPITAL 15921

Feature 16

4.16. Ratio of 'Average Total Payments' to 'Zip_Median_Income'

'Avg_Payment_by_Median_Income'
This ratio will give the an idea as to whether the average payments are higher or lower than the median income of the population. The hypothesis is that if the
ratio is high, then the persons in that zip code are paying much higher than their median income for the treatment, which might be a fraud case, as the
patient/hospital might have inflated bills.

Even the same hospital may have lower ratio for a particular DRG or State, but higher for another one, so I will not group the data. I need individual ratio for
each row entry.

In [103]: df['Avg_Payment_by_Median_Income'] = df['Average_Total_Payments'] / df['Zip_Median_Income']
df.head(2)

In [104]: fig, ax = plt.subplots(figsize= (20,5))
sns.boxplot(df["Avg_Payment_by_Median_Income"])
plt.title("Distribution of Average Total Payments by Zipcode Median Income", fontsize=20)

The ones which are over 5 might need some investigation.

Feature 17

4.17. Ratio of 'Total Discharges' to 'Zip_Population'

'Total_Disc_by_Pop'
Hospitals havings very ratio are likely to be showing false patients.

Those with higher ratio, might need further investigation. Even the same hospital may have lower ratio for a particular DRG or State, but higher for another one,
so I will not group the data. I need individual ratio for each row entry.

In [105]: df['Total_Disc_by_Pop'] = df['Total_Discharges'] / df['Zip_Population']
df.head(2)

In [106]: fig, ax = plt.subplots(figsize= (20,5))
sns.boxplot(df["Total_Disc_by_Pop"])
plt.title("Distribution of Total Discharges by Zipcode Population", fontsize=20)

The ratio's over 10 might need investigation.

.

-------------------------------------- SECTION BREAK --------------------------------------

.

5. Modelling
I will create a new copy of the data to perform the analysis, and call it 'df1'.

In [107]: # Create a copy of the original dataset

df1 = df.copy()

In [108]: # Check nulls

df1.isnull().sum().sum()

These NA's are created as a reuslt of merging the Income and the Population data by zipcode. There are certain zip codes in our data set, which do not have
an entry n the zipcode dataset.

So, I will replace the NA's with the median of the respective column.

Impute missing Income and Population values with respective median

In [109]: df1 = df1.fillna(df1.median())

In [110]: df1.isnull().sum().sum()

Drop irrelavant columns
There a lot of columns which will not be useful in the kmeans clustering analysis, most of which are categorical columns. I will drop them.

In [111]: df1 = df1.drop(columns = ['Provider_Id', 'Provider_Name', 'Provider_Street_Address',
 'Provider_City', 'Provider_Zip_Code',
 'Hospital_Referral_Region_Description',
 'Region', 'Total_Discharges',
 'Division', 'State_Total', 'Zip_Median_Income',
 'Zip_Population', 'Median_Score_Flag',
 'Provider_Flag_by_Median_Score'])
df1.head(2)

Categorical Variables

I will drop the categrical columns, since I have alrwady used them to create meaningful new features

Label en-coding will be misleading for the clustering, and one-hot encoding creates many different new binary features, which is not ideal for a kNN and PCA
clustering.

In [112]: df1 = df1.drop(columns = ['DRG_Definition', 'Provider_State'])

Create a alias for numerical variables

In [113]: # All numeric / float variables in thedataset

num_variables_all = ['Average_Covered_Charges', 'Average_Total_Payments', 'Average_Medicare_Payments',
 'Average_Cost_Per_Procedure', 'Medicare_%_Paid',
 'Medicare_%_Paid_State', 'Out_of_Pocket_Payment',
 'Out_of_Pocket_per_discharge', 'Median_Avg_Total_Pyt',
 'Median_Score', 'Median_Score_by_Provider',
 'Avg_Payment_by_Median_Income',
 'Total_Disc_by_Pop']

Check multi-collinearity
Drop one column from a pair with a ratio of above 0.7

In [114]: corr = df1.corr()
f,ax = plt.subplots(figsize=(15,10))
sns.heatmap(corr, annot=True, cmap='Greens', linewidths=.4, fmt= '.1f', ax=ax)
plt.show()

In [115]: # Remove one each from the pair of highly collinear variables

df1 = df1.drop(columns = ['Average_Medicare_Payments', 'Average_Covered_Charges',
 'Median_Avg_Total_Pyt', 'Out_of_Pocket_per_discharge',
 'Average_Cost_Per_Procedure', 'Median_Score_by_Provider',
 'Avg_Payment_by_Median_Income'])

In [116]: # Final numeric variables selected

num_variables = ['Average_Total_Payments',
 'Medicare_%_Paid',
 'Medicare_%_Paid_State', 'Out_of_Pocket_Payment',
 'Median_Score',
 'Total_Disc_by_Pop']

Scaling/Standardizing all float or integer variables
I will use Standard Scalar/Standardize to scale all the numerical variables

In [117]: X = StandardScaler().fit_transform(df1)
X = pd.DataFrame(data = X, columns = num_variables)

In [118]: X.isnull().sum().sum()

5.1. Autoencoder clustering

Split into Train Test, to perform the Autoencoder clustering
For this, I will first split my data to train and test. This is essential to train the model.

Note:

Even the train data has many outliers, so instead of using the smalle test data, I will use the entire data (X) inplace of the test data.

In [119]: X.shape[0] * 0.80

In [120]: X_train = X.iloc[:130452,:]
X_test = X.iloc[130453:,:]
print("Shape of new dataframes - {} , {}".format(X_train.shape, X_test.shape))

Autoencoder Model
An autoencoder is a type of artificial neural network used to learn efficient data codings in an unsupervised manner. The aim of an autoencoder is to learn a
representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore signal “noise”.

Plot in a 2-D space
In order to give you a good sense of what the data look like, I use PCA reduce to two dimensions and plot accordingly.

In [121]: pca = PCA(2)
x_pca = pca.fit_transform(X_train)
x_pca = pd.DataFrame(x_pca)
x_pca.columns=['PC1','PC2']
x_pca.head()

In [122]: # Plot
f,ax = plt.subplots(figsize=(8,5))
plt.scatter(x = x_pca['PC1'], y = x_pca['PC2'], alpha = 0.3)
plt.title('Scatter plot of PC1 and PC2')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()

The light colored points might seem as outliers or anomalies.

Now, I will be building 3 different models, using three different hyperparametrs, which will help build a stable model

5.1.1. Model 1

Input and Output needs to be 6, as there are 6 variables

In [123]: # train kNN detector

clf1 = AutoEncoder(hidden_neurons =[6, 5, 5, 6])
clf1.fit(X_train)

Generate the anomaly score using clf.decision_function and visualize
"decision_functions()" predicts the outliers of a dataframe. A higher score means more abnormal.
The histogram below shows there are outliers. If we choose 1.0 to be the cutpoint, we can suggest those >=1.0 to be outliers

I will use the entire dataset, which is X as the Test data.
This is because even the train dataset containes outliers, and I need to idenify outliers in the entire dataset.

In [124]: y_train_scores = clf1.decision_scores_
y_train_scores

In [125]: # get the prediction on the test data
y_test_pred = clf1.predict(X) # outlier labels (0 or 1)

clf.decision_function: Predict raw anomaly score of X using the fitted detector.
y_test_scores = clf1.decision_function(X) # outlier scores

y_test_pred = pd.Series(y_test_pred)
y_test_scores = pd.Series(y_test_scores)

In [126]: y_test_pred.value_counts()

Plotting the Scores

In [127]: # Plot it!
f,ax = plt.subplots(figsize=(15,5))
plt.hist(y_test_scores, bins=150)
plt.title("Histogram for Model Autoencoder Clf1, Anomaly Scores, with 150 bins")
plt.xlabel('Score')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range to 10.0 and then re-plot

In [128]: y_test_scores_small = y_test_scores[y_test_scores[:,] < 10.0]
y_test_scores_small

In [129]: f,ax = plt.subplots(figsize=(15,5))
plt.hist(y_test_scores_small, bins='auto')
plt.title("Histogram for Model Autoencoder Clf1, Anomaly Scores, with auto bins")
plt.xlabel('Score')
plt.show()

Observation:

A high anomaly score probably means more abnormal transaction/score. The histogram above shows there are outliers. I will now chose a range of cut points,
to check the distribution of clusters, and then identify some as suspicious.

Reasonable Boundary
Generally, looking at the graph, 6.0 seems the ideal number to be a cut point or the reasonable boundary. If we choose 6.0 to be the cut point, we can suggest
those >= 6.0 to be outliers.

But, I want to investigate deeper, and I will chose 2 diifferent cut points, which are:

6.0
10.0

Now, lets evaluate these 2 different cut points, and build 5-cluster model.

Build a 3 cluster model as per above reasonable boundaries

In [130]: df_test = pd.DataFrame(X)
df_test['score'] = y_test_scores

df_test['cluster'] = (np.where(df_test['score'] > 10.0, 3,
 (np.where(df_test['score'] > 6.0, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [131]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

I will provde the description and business insight later below, when I aggregate with the 'Average' method

Summary statistics

In [132]: # Now let's show the summary statistics:
df_test.groupby('cluster').mean()

5.1.2. Model 2

In [133]: X = StandardScaler().fit_transform(df1)
X = pd.DataFrame(data = X, columns = num_variables)

In [134]: X_train = X.iloc[:130452,:]

In [135]: clf2 = AutoEncoder(hidden_neurons =[6, 5, 2, 5, 6], epochs = 20)
clf2.fit(X_train)

I chose epochs = 20, as I notice that after 16th iteration, the loss stabilizes.

2882 TX 450388 METHODIST HOSPITAL 15921

590 DE 80001 CHRISTIANA CARE HEALTH SERVICES, INC. 14542

1534 MI 230130 WILLIAM BEAUMONT HOSPITAL 14469

Out[103]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 28 columns

Out[104]: Text(0.5, 1.0, 'Distribution of Average Total Payments by Zipcode Median Income')

Out[105]:
DRG_Definition Provider_Id Provider_Name Provider_Street_Address Provider_City Provider_State Provider_Zip_Code Hospital_Referral_Region_Description Total_Discharges

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 91

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

10001
SOUTHEAST

ALABAMA
MEDICAL
CENTER

1108 ROSS CLARK
CIRCLE DOTHAN AL 36301 AL - Dothan 38

2 rows × 29 columns

Out[106]: Text(0.5, 1.0, 'Distribution of Total Discharges by Zipcode Population')

Out[108]: 48452

Out[110]: 0

Out[111]:
DRG_Definition Provider_State Average_Covered_Charges Average_Total_Payments Average_Medicare_Payments Average_Cost_Per_Procedure Medicare_%_Paid

0
039 -

EXTRACRANIAL
PROCEDURES
W/O CC/MCC

AL 32963.07 5777.24 4763.73 63.486154 0.824568

1

057 -
DEGENERATIVE

NERVOUS
SYSTEM

DISORDERS
W/...

AL 20312.78 4894.76 3865.50 128.809474 0.789722

Out[118]: 0

Out[119]: 130452.0

Shape of new dataframes - (130452, 6) , (32612, 6)

Out[121]:
PC1 PC2

0 -1.177011 0.473709

1 -1.477861 0.653917

2 -0.494731 0.063673

3 -1.039397 0.509059

4 -1.486228 0.669817

Out[123]:

Model: "sequential"

Layer (type) Output Shape Param #
===
dense (Dense) (None, 6) 42

dropout (Dropout) (None, 6) 0

dense_1 (Dense) (None, 6) 42

dropout_1 (Dropout) (None, 6) 0

dense_2 (Dense) (None, 6) 42

dropout_2 (Dropout) (None, 6) 0

dense_3 (Dense) (None, 5) 35

dropout_3 (Dropout) (None, 5) 0

dense_4 (Dense) (None, 5) 30

dropout_4 (Dropout) (None, 5) 0

dense_5 (Dense) (None, 6) 36

dropout_5 (Dropout) (None, 6) 0

dense_6 (Dense) (None, 6) 42
===
Total params: 269
Trainable params: 269
Non-trainable params: 0

None
Epoch 1/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.1308 - val_loss: 0.9095
Epoch 2/100
3669/3669 [==============================] - 4s 981us/step - loss: 1.0259 - val_loss: 0.8945
Epoch 3/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0148 - val_loss: 0.8917
Epoch 4/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0130 - val_loss: 0.8909
Epoch 5/100
3669/3669 [==============================] - 3s 909us/step - loss: 1.0126 - val_loss: 0.8906
Epoch 6/100
3669/3669 [==============================] - 3s 849us/step - loss: 1.0124 - val_loss: 0.8905
Epoch 7/100
3669/3669 [==============================] - 3s 830us/step - loss: 1.0123 - val_loss: 0.8905
Epoch 8/100
3669/3669 [==============================] - 4s 963us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 9/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 10/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 11/100
3669/3669 [==============================] - 3s 880us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 12/100
3669/3669 [==============================] - 3s 878us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 13/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 14/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 15/100
3669/3669 [==============================] - 3s 875us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 16/100
3669/3669 [==============================] - 3s 879us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 17/100
3669/3669 [==============================] - 3s 831us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 18/100
3669/3669 [==============================] - 3s 839us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 19/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 20/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 21/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 22/100
3669/3669 [==============================] - 4s 958us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 23/100
3669/3669 [==============================] - 3s 905us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 24/100
3669/3669 [==============================] - 3s 875us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 25/100
3669/3669 [==============================] - 3s 829us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 26/100
3669/3669 [==============================] - 3s 848us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 27/100
3669/3669 [==============================] - 3s 865us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 28/100
3669/3669 [==============================] - 3s 890us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 29/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 30/100
3669/3669 [==============================] - 5s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 31/100
3669/3669 [==============================] - 3s 881us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 32/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 33/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 34/100
3669/3669 [==============================] - 3s 938us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 35/100
3669/3669 [==============================] - 4s 992us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 36/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 37/100
3669/3669 [==============================] - 3s 868us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 38/100
3669/3669 [==============================] - 3s 935us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 39/100
3669/3669 [==============================] - 3s 852us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 40/100
3669/3669 [==============================] - 3s 880us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 41/100
3669/3669 [==============================] - 3s 892us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 42/100
3669/3669 [==============================] - 3s 867us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 43/100
3669/3669 [==============================] - 3s 845us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 44/100
3669/3669 [==============================] - 3s 840us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 45/100
3669/3669 [==============================] - 4s 968us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 46/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 47/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 48/100
3669/3669 [==============================] - 4s 980us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 49/100
3669/3669 [==============================] - 5s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 50/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 51/100
3669/3669 [==============================] - 3s 898us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 52/100
3669/3669 [==============================] - 4s 985us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 53/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 54/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 55/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 56/100
3669/3669 [==============================] - 4s 993us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 57/100
3669/3669 [==============================] - 3s 885us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 58/100
3669/3669 [==============================] - 3s 855us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 59/100
3669/3669 [==============================] - 3s 847us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 60/100
3669/3669 [==============================] - 3s 843us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 61/100
3669/3669 [==============================] - 3s 844us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 62/100
3669/3669 [==============================] - 3s 855us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 63/100
3669/3669 [==============================] - 3s 791us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 64/100
3669/3669 [==============================] - 3s 797us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 65/100
3669/3669 [==============================] - 3s 795us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 66/100
3669/3669 [==============================] - 3s 819us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 67/100
3669/3669 [==============================] - 3s 819us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 68/100
3669/3669 [==============================] - 3s 835us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 69/100
3669/3669 [==============================] - 3s 800us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 70/100
3669/3669 [==============================] - 3s 803us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 71/100
3669/3669 [==============================] - 3s 823us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 72/100
3669/3669 [==============================] - 3s 799us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 73/100
3669/3669 [==============================] - 3s 865us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 74/100
3669/3669 [==============================] - 3s 855us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 75/100
3669/3669 [==============================] - 3s 861us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 76/100
3669/3669 [==============================] - 3s 835us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 77/100
3669/3669 [==============================] - 3s 801us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 78/100
3669/3669 [==============================] - 3s 830us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 79/100
3669/3669 [==============================] - 3s 800us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 80/100
3669/3669 [==============================] - 4s 954us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 81/100
3669/3669 [==============================] - 3s 857us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 82/100
3669/3669 [==============================] - 3s 786us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 83/100
3669/3669 [==============================] - 3s 938us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 84/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 85/100
3669/3669 [==============================] - 3s 946us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 86/100
3669/3669 [==============================] - 3s 865us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 87/100
3669/3669 [==============================] - 3s 886us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 88/100
3669/3669 [==============================] - 3s 917us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 89/100
3669/3669 [==============================] - 3s 912us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 90/100
3669/3669 [==============================] - 3s 871us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 91/100
3669/3669 [==============================] - 3s 898us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 92/100
3669/3669 [==============================] - 3s 817us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 93/100
3669/3669 [==============================] - 4s 972us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 94/100
3669/3669 [==============================] - 4s 987us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 95/100
3669/3669 [==============================] - 3s 939us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 96/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 97/100
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0122 - val_loss: 0.8904
Epoch 98/100
3669/3669 [==============================] - 4s 961us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 99/100
3669/3669 [==============================] - 3s 941us/step - loss: 1.0122 - val_loss: 0.8904
Epoch 100/100
3669/3669 [==============================] - 3s 850us/step - loss: 1.0122 - val_loss: 0.8904

AutoEncoder(batch_size=32, contamination=0.1, dropout_rate=0.2, epochs=100,
 hidden_activation='relu', hidden_neurons=[6, 5, 5, 6],
 l2_regularizer=0.1,
 loss=<function mean_squared_error at 0x7f7edf693b90>,
 optimizer='adam', output_activation='sigmoid', preprocessing=True,
 random_state=None, validation_size=0.1, verbose=1)

Out[124]: array([1.82483136, 1.97452885, 1.81487235, ..., 1.49876268, 0.95353885,
 0.9863651])

Out[126]: 0 146273
1 16792
dtype: int64

Out[130]: 1 160796
2 1746
3 523
Name: cluster, dtype: int64

Out[131]:
Percentage of total Cluster

1 98.608530 1

2 1.070739 2

3 0.320731 3

Out[132]:
Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop score

cluster

1 -0.048213 0.015430 -0.003469 -0.063578 -0.032782 -0.022991 1.778916

2 3.363007 -0.833901 0.234229 3.424887 2.006283 0.233353 7.344035

3 3.596005 -1.959903 0.284640 8.113254 3.380891 6.289655 17.103574

Model: "sequential_1"

Layer (type) Output Shape Param #
===
dense_7 (Dense) (None, 6) 42

dropout_6 (Dropout) (None, 6) 0

dense_8 (Dense) (None, 6) 42

dropout_7 (Dropout) (None, 6) 0

dense_9 (Dense) (None, 6) 42

In [136]: y_train_scores = clf2.decision_scores_
y_train_scores

In [137]: # clf.decision_function: Predict raw anomaly score of X using the fitted detector.
y_test_scores = clf2.decision_function(X) # outlier scores
y_test_scores = pd.Series(y_test_scores)

Plotting the Scores

In [138]: # Plot it!
f,ax = plt.subplots(figsize=(15,5))
plt.hist(y_test_scores, bins=150)
plt.title("Histogram for Model Autoencoder Clf2, Anomaly Scores, with 150 bins")
plt.xlabel('Score')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range to 10.0 and then re-plot

In [139]: y_test_scores_small = y_test_scores[y_test_scores[:,] < 10.0]
y_test_scores_small

In [140]: f,ax = plt.subplots(figsize=(15,5))
plt.hist(y_test_scores_small, bins='auto')
plt.title("Histogram for Model Autoencoder Clf1, Anomaly Scores, with auto bins")
plt.xlabel('Score')
plt.show()

Build a 3 cluster model

In [141]: df_test = pd.DataFrame(X)
df_test['score'] = y_test_scores

df_test['cluster'] = (np.where(df_test['score'] > 10.0, 3,
 (np.where(df_test['score'] > 6.0, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [142]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

I will provde the description and business insight later below, when I aggregate with the 'Average' method

Summary statistics

In [143]: # Now let's show the summary statistics:
df_test.groupby('cluster').mean()

5.1.3. Model 3

In [144]: X = StandardScaler().fit_transform(df1)
X = pd.DataFrame(data = X, columns = num_variables)

In [145]: X_train = X.iloc[:130452,:]

In [146]: clf3 = AutoEncoder(hidden_neurons =[6, 5, 3, 2, 3, 5, 6], epochs = 20)
clf3.fit(X_train)

EPOCHS: Here, I chose the value 20, as after the 7th iteration, the loss stabilizes

Visualize loss history

In [147]: pd.DataFrame.from_dict(clf3.history_).plot(title='Error Loss History');

In [148]: y_train_scores = clf3.decision_scores_
y_train_scores

In [149]: # clf.decision_function: Predict raw anomaly score of X using the fitted detector.
y_test_scores = clf3.decision_function(X) # outlier scores
y_test_scores = pd.Series(y_test_scores)

Plotting the Scores

In [150]: # Plot it!
f,ax = plt.subplots(figsize=(15,5))
plt.hist(y_test_scores, bins=150)
plt.title("Histogram for Model Autoencoder Clf3, Anomaly Scores, with 150 bins")
plt.xlabel('Score')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range to 10.0 and then re-plot

In [151]: y_test_scores_small = y_test_scores[y_test_scores[:,] < 10.0]
y_test_scores_small

In [152]: f,ax = plt.subplots(figsize=(15,5))
plt.hist(y_test_scores_small, bins='auto')
plt.title("Histogram for Model Autoencoder Clf3, Anomaly Scores, with auto bins")
plt.xlabel('Score')
plt.show()

Build a 3 cluster model

In [153]: df_test = pd.DataFrame(X)
df_test['score'] = y_test_scores

df_test['cluster'] = (np.where(df_test['score'] > 10.0, 3,
 (np.where(df_test['score'] > 6.0, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [154]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

I will provde the description and business insight later below, when I aggregate with the 'Average' method

Summary statistics

In [155]: # Now let's show the summary statistics:

df_test.groupby('cluster').mean()

Observation:
All three models produce the exact same number of data points in each cluster.

Note:
Outlier Detection Models Are Prone and sensitive to Outliers/Anomalies

Also, Outlier detection models tend to be very sensitive to outliers. In our case the unsupervised k-NN model can easily commit overfitting. We need to produce
stable models.

Achieve Model Stability by Aggregating Multiple Models
The solution is to train multiple models then aggregate the scores. By aggregating multiple models, the chance of overfitting is greatly reduced and the
prediction accuracy will be improved. The PyOD module offers four methods to aggregate the outcome. I will use the 'Average' method for my analysis.

5.1.4. Aggregate by 'Average' Method to get better results

In [156]: new_X = X.drop(columns = ['score', 'cluster'])

In [157]: # Put all the predictions in a data frame
train_scores = pd.DataFrame({'clf1': clf1.decision_scores_,
 'clf2': clf2.decision_scores_,
 'clf3': clf3.decision_scores_
 })

test_scores = pd.DataFrame({'clf1': clf1.decision_function(new_X),
 'clf2': clf2.decision_function(new_X),
 'clf3': clf3.decision_function(new_X)
 })

In [158]: # Although we did standardization before, it was for the variables.
Now we do the standardization for the decision scores

train_scores_norm, test_scores_norm = standardizer(train_scores,test_scores)

Average Method

In [159]: y_by_average = average(test_scores_norm)
y_by_average[1:10]

Plotting the scores

In [160]: fig, ax = plt.subplots(figsize= (20,6))
plt.plot(y_by_average);
plt.axhline(y=clf3.threshold_, c='r', ls='dotted', label='threshoold');
plt.title('Anomaly Scores with automatically calculated threshold, for model Autoencoder Clf3');

In [161]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_by_average, bins=200) # arguments are passed to np.histogram
plt.title("Combination by average, for model Autoencoder, with 200 bins")
plt.xlabel('Score')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range at 8.0 and then re-plot

In [162]: y_by_average_small = y_by_average[y_by_average[:,] < 8.0]
y_by_average_small

In [163]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_by_average_small, bins = 'auto') # arguments are passed to np.histogram
plt.title("Histogram for Combination by Average, Autoencoder, Anomaly Scores, with auto bins")
plt.xlabel('Score')
plt.show()

Build a 3 cluster model

In [164]: df_test = pd.DataFrame(X)
df_test['score'] = y_by_average

df_test['cluster'] = (np.where(df_test['score'] > 10.0, 3,
 (np.where(df_test['score'] > 2.0, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [165]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

In [166]: fig = px.bar(temp, x = 'Cluster', y = 'Percentage of total', color = 'Cluster',
 width=600, height=400,
 title = "Percentage of total in each cluster")
fig.show()

Final Summary statistics

In [167]: cluster_df = df_test.groupby('cluster').mean().reset_index()
cluster_df

In [168]: cluster_df.plot(x = 'cluster', y = 'Out_of_Pocket_Payment', color = 'green', kind = 'bar')

In [169]: cluster_df.plot(x = 'cluster', y ='Total_Disc_by_Pop' , color = 'red', kind ='bar')

In [170]: cluster_df.plot(x = 'cluster', y ='score' , color = 'blue', kind ='bar')

Observation:

From the above 3 cluster analysis, the following can be explained:

A. Clusters 2, and 3 have a very small percentage of total data in their cluster pool. So, there are two possible options for these clusters:

Either they are true anomalies
They are provider of rare services, or very expensive operations, surgeries or services, performed only by very limited number of providers in the country.

B. Cluster 3 has a roughly 0.07%, and Cluster 2 has roughly 2.08% of the data in its cluster pool. These are the critical cut-off points, as I believe anything near
or less than 10% of the entire data, represents a different but normal cluster group.

C. The other clusters which have over 10% of the total data in their cluster pools, seem normal and fine. The differences lie probably due to state or the drg
definition or the state. But they are not not likely to be a cause for anomalies.

ANOMALIES or SUSPICIOUS clusters:
The above table gives a comprehensive view of the means, as per the different clusters which is useful to identofy anomalies.

From the final 6 features used for clustering, I generated 3 different clusters using the aggregated average method. The following are the key takeaways for
anomalies and suspicious clusters:

Total Discharges by Population

1. Clusters 3 has an extremely high value, away from the normal mean of other clusters. Cluster 3 has a mean almost 4-5 times the mean of other clusters,
which is very a big concern, even though this cluster has like 0.07% of the total data points.

Average Total Payments

1. Cluster 2 and 3 have extremely high values. Cluster 3, which has around 0.07% of the total data points, and cluster 2, which has 2.08% of the data, both
have a mean of 3, which is over 3-4 times the means of the other clusters.

Out of Pocket Payment

1. Cluster 3 has extremely high values. Cluster 3, which has around 0.07% of the total data points, has a mean of over 11, which is over 10-11 times the
means of the other clusters.

Median Score

1. Cluster 3 has the highest mean amongst all other clusters means, 3-4 times higher than all other clusters.

From the above observations, it is clear that there is 1 distinct cluster, which has a very high cluster mean for a lot of variables, if not all, and emerges as
suspicious cases or has anomalies. This is cluster 3.

Combining these results with the Percentage results obtained in the previous step, I can concule that Clusters 3 is suspicious and need further investigation.

BUSINESS INSIGHTS

I performed the iForest clustering for the data, and also used the 'Average' aggregate method to build a stable model. On building the average model, I found
that the original model I built was stable and had good insights.

My analysis gave me 3 clusters, and out of those 3, Cluster 3 seems to be the one which has a lot a potential anomalies, and is suspicious because the means
for the variables, as explained above, are far away from the means of the variables of other clusters.

Further, on evaluating the anomaly score for all the clusters, which gives us insights about the clusters which are anomalies, as the anomalies might have a
very very high score comapred to others, I see that cluster 3 has a score almost 19 times higher than all other clusters. So, I can safely conclude that Cluster 3
is highly suspicious.

So, I would pass on the 130 specific entries of the Cluster 3 to the relevant authorities, and call for further investigation on each of the entries, to understand of
they are true anomalies. I will provide all the reasoning as I have highlighted above, as to the differences in the means, and walk through the process I have
done.

5.2. iForest

Scaling all float or integer variables
I will use Standard Scalar to scale all the numerical variables

In [171]: X = StandardScaler().fit_transform(df1)
X = pd.DataFrame(data = X, columns = num_variables)

In [172]: X_train = X.iloc[:130452,:]

iForest Clustering

5.2.1. Model 1

In [173]: # Here, I will take the length of train as the max samples

clf1 = IForest(behaviour="new", max_samples=len(X_train))
clf1.fit(X_train)

Out[135]:

dense_9 (Dense) (None, 6) 42

dropout_8 (Dropout) (None, 6) 0

dense_10 (Dense) (None, 5) 35

dropout_9 (Dropout) (None, 5) 0

dense_11 (Dense) (None, 2) 12

dropout_10 (Dropout) (None, 2) 0

dense_12 (Dense) (None, 5) 15

dropout_11 (Dropout) (None, 5) 0

dense_13 (Dense) (None, 6) 36

dropout_12 (Dropout) (None, 6) 0

dense_14 (Dense) (None, 6) 42
===
Total params: 266
Trainable params: 266
Non-trainable params: 0

None
Epoch 1/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0849 - val_loss: 1.0958
Epoch 2/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0010 - val_loss: 1.0815
Epoch 3/20
3669/3669 [==============================] - 3s 953us/step - loss: 0.9937 - val_loss: 1.0786
Epoch 4/20
3669/3669 [==============================] - 4s 994us/step - loss: 0.9921 - val_loss: 1.0779
Epoch 5/20
3669/3669 [==============================] - 4s 979us/step - loss: 0.9917 - val_loss: 1.0777
Epoch 6/20
3669/3669 [==============================] - 4s 1ms/step - loss: 0.9916 - val_loss: 1.0776
Epoch 7/20
3669/3669 [==============================] - 4s 1ms/step - loss: 0.9915 - val_loss: 1.0776
Epoch 8/20
3669/3669 [==============================] - 4s 1ms/step - loss: 0.9915 - val_loss: 1.0775
Epoch 9/20
3669/3669 [==============================] - 3s 953us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 10/20
3669/3669 [==============================] - 4s 977us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 11/20
3669/3669 [==============================] - 3s 950us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 12/20
3669/3669 [==============================] - 4s 973us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 13/20
3669/3669 [==============================] - 4s 996us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 14/20
3669/3669 [==============================] - 3s 932us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 15/20
3669/3669 [==============================] - 3s 903us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 16/20
3669/3669 [==============================] - 3s 913us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 17/20
3669/3669 [==============================] - 3s 898us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 18/20
3669/3669 [==============================] - 3s 927us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 19/20
3669/3669 [==============================] - 3s 927us/step - loss: 0.9914 - val_loss: 1.0775
Epoch 20/20
3669/3669 [==============================] - 4s 1ms/step - loss: 0.9914 - val_loss: 1.0775

AutoEncoder(batch_size=32, contamination=0.1, dropout_rate=0.2, epochs=20,
 hidden_activation='relu', hidden_neurons=[6, 5, 2, 5, 6],
 l2_regularizer=0.1,
 loss=<function mean_squared_error at 0x7f7edf693b90>,
 optimizer='adam', output_activation='sigmoid', preprocessing=True,
 random_state=None, validation_size=0.1, verbose=1)

Out[136]: array([1.82739647, 1.97734463, 1.81649377, ..., 1.50026115, 0.95358793,
 0.98745553])

Out[141]: 1 160799
2 1743
3 523
Name: cluster, dtype: int64

Out[142]:
Percentage of total Cluster

1 98.610370 1

2 1.068899 2

3 0.320731 3

Out[143]:
Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop score

cluster

1 -0.048136 0.015455 -0.003452 -0.063578 -0.032743 -0.022992 1.779754

2 3.361720 -0.837751 0.233064 3.430939 2.006263 0.233808 7.344575

3 3.596005 -1.959903 0.284640 8.113254 3.380891 6.289655 17.101918

Out[146]:

Model: "sequential_2"

Layer (type) Output Shape Param #
===
dense_15 (Dense) (None, 6) 42

dropout_13 (Dropout) (None, 6) 0

dense_16 (Dense) (None, 6) 42

dropout_14 (Dropout) (None, 6) 0

dense_17 (Dense) (None, 6) 42

dropout_15 (Dropout) (None, 6) 0

dense_18 (Dense) (None, 5) 35

dropout_16 (Dropout) (None, 5) 0

dense_19 (Dense) (None, 3) 18

dropout_17 (Dropout) (None, 3) 0

dense_20 (Dense) (None, 2) 8

dropout_18 (Dropout) (None, 2) 0

dense_21 (Dense) (None, 3) 9

dropout_19 (Dropout) (None, 3) 0

dense_22 (Dense) (None, 5) 20

dropout_20 (Dropout) (None, 5) 0

dense_23 (Dense) (None, 6) 36

dropout_21 (Dropout) (None, 6) 0

dense_24 (Dense) (None, 6) 42
===
Total params: 294
Trainable params: 294
Non-trainable params: 0

None
Epoch 1/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.1456 - val_loss: 0.9411
Epoch 2/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0218 - val_loss: 0.9210
Epoch 3/20
3669/3669 [==============================] - 6s 2ms/step - loss: 1.0115 - val_loss: 0.9179
Epoch 4/20
3669/3669 [==============================] - 5s 1ms/step - loss: 1.0099 - val_loss: 0.9172
Epoch 5/20
3669/3669 [==============================] - 6s 2ms/step - loss: 1.0096 - val_loss: 0.9169
Epoch 6/20
3669/3669 [==============================] - 4s 987us/step - loss: 1.0094 - val_loss: 0.9168
Epoch 7/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0094 - val_loss: 0.9167
Epoch 8/20
3669/3669 [==============================] - 6s 2ms/step - loss: 1.0093 - val_loss: 0.9167
Epoch 9/20
3669/3669 [==============================] - 5s 1ms/step - loss: 1.0093 - val_loss: 0.9167
Epoch 10/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0093 - val_loss: 0.9167
Epoch 11/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0093 - val_loss: 0.9167
Epoch 12/20
3669/3669 [==============================] - 4s 985us/step - loss: 1.0093 - val_loss: 0.9166
Epoch 13/20
3669/3669 [==============================] - 4s 994us/step - loss: 1.0093 - val_loss: 0.9166
Epoch 14/20
3669/3669 [==============================] - 5s 1ms/step - loss: 1.0093 - val_loss: 0.9166
Epoch 15/20
3669/3669 [==============================] - 5s 1ms/step - loss: 1.0093 - val_loss: 0.9166
Epoch 16/20
3669/3669 [==============================] - 6s 2ms/step - loss: 1.0093 - val_loss: 0.9166
Epoch 17/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0093 - val_loss: 0.9166
Epoch 18/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0093 - val_loss: 0.9166
Epoch 19/20
3669/3669 [==============================] - 4s 1ms/step - loss: 1.0093 - val_loss: 0.9166
Epoch 20/20
3669/3669 [==============================] - 4s 992us/step - loss: 1.0093 - val_loss: 0.9166

AutoEncoder(batch_size=32, contamination=0.1, dropout_rate=0.2, epochs=20,
 hidden_activation='relu', hidden_neurons=[6, 5, 3, 2, 3, 5, 6],
 l2_regularizer=0.1,
 loss=<function mean_squared_error at 0x7f7edf693b90>,
 optimizer='adam', output_activation='sigmoid', preprocessing=True,
 random_state=None, validation_size=0.1, verbose=1)

Out[148]: array([1.8273561 , 1.97727674, 1.81639434, ..., 1.50032766, 0.95427348,
 0.98825012])

Out[153]: 1 160800
2 1742
3 523
Name: cluster, dtype: int64

Out[154]:
Percentage of total Cluster

1 98.610983 1

2 1.068286 2

3 0.320731 3

Out[155]:
Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop score

cluster

1 -0.048137 0.015426 -0.003444 -0.063561 -0.032732 -0.022992 1.779880

2 3.363801 -0.835532 0.232484 3.431336 2.006357 0.233961 7.344769

3 3.596005 -1.959903 0.284640 8.113254 3.380891 6.289655 17.101343

Out[159]: array([0.0519935 , -0.05145131, -0.07393179, 0.0627655 , 0.19510981,
 0.01899418, 0.43205148, 0.01813374, -0.02456071])

Out[162]: array([-0.04461277, 0.0519935 , -0.05145131, ..., -0.22014229,
 -0.18677936, 0.53542838])

Out[164]: 1 159312
2 3623
3 130
Name: cluster, dtype: int64

Out[165]:
Percentage of total Cluster

1 97.698464 1

2 2.221813 2

3 0.079723 3

0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100 Cluster
1
2
3

Percentage of total in each cluster

Cluster

Pe
rc

en
ta

ge
 o

f
to

ta
l

Out[167]:
cluster Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop score

0 1 -0.072305 0.019843 -0.005284 -0.081430 -0.047028 -0.023663 -0.097021

1 2 3.057322 -0.800623 0.211932 3.181745 1.927611 0.344101 3.364443

2 3 3.402828 -2.003812 0.569357 11.117692 3.911148 19.408110 19.016398

Out[168]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eb1835990>

Out[169]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eaf163910>

Out[170]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ead636fd0>

Out[173]: IForest(behaviour='new', bootstrap=False, contamination=0.1, max_features=1.0,
 max_samples=130452, n_estimators=100, n_jobs=1, random_state=None,
 verbose=0)

For the purpose of testing the trained set, I will use the entire dataset, which X.
This is because even the train dataset containes outliers, and I need to idenify outliers in the entire dataset.

In [174]: # clf.decision_function: Predict raw anomaly score of X using the fitted detector.
We apply the model to the test data X to get the outlier scores.
y_test_scores = clf1.decision_function(X) # outlier scores
y_test_scores = pd.Series(y_test_scores)
y_test_scores.head()

Plotting the Scores

In [175]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_test_scores, bins =150) # arguments are passed to np.histogram
plt.title("Histogram for Model iForest Clf1, Anomaly Scores, with 150 bins")
plt.xlabel('Distance')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range at 0.2 and then re-plot

In [176]: y_test_scores_small = y_test_scores[y_test_scores[:,] < 0.2]
#y_test_scores_small

In [177]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_test_scores_small, bins = 'auto') # arguments are passed to np.histogram
plt.title("Histogram for Model iForest Clf1, Anomaly Scores, with auto bins")
plt.xlabel('Distance')
plt.show()

Observation:

A high anomaly score probably means more abnormal transaction/score. The histogram above shows there are outliers. I will now chose a range of cut points,
to check the distribution of clusters, and then identify some as suspicious.

Reasonable Boundary
Generally, looking at the graph, 0.05 seems the ideal number to be a cut point or the reasonable boundary. If we choose 0.05 to be the cut point, we can
suggest those >= 0.05 to be outliers.

But, I want to investigate deeper, and I will chose 2 diifferent cut points, which are:

0.05
0.10

Now, lets evaluate these 2 different cut points, and build 5-cluster model.

Build a 3 cluster model as per above reasonable boundaries

In [178]: df_test = pd.DataFrame(X)
df_test['distance'] = y_test_scores

df_test['cluster'] = (np.where(df_test['distance'] > 0.10, 3,
 (np.where(df_test['distance'] > 0.05, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [179]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

I will provde the description and business insight later below, when I aggregate with the 'Average' method

Summary statistics

In [180]: # Now let's show the summary statistics:
df_test.groupby('cluster').mean()

5.2.2. Model 2

In [181]: X = StandardScaler().fit_transform(df1)
X = pd.DataFrame(data = X, columns = num_variables)

In [182]: X_train = X.iloc[:130452,:]

In [183]: # Here, I will take the 80% of the length of train as the max samples

clf2 = IForest(behaviour="new", max_samples=int(round((len(X_train)*0.8),0)))
clf2.fit(X_train)

For the purpose of testing the trained set, I will use the entire dataset, which X. This is because even the train dataset containes outliers, and I need
to idenify outliers in the entire dataset.

In [184]: # clf.decision_function: Predict raw anomaly score of X using the fitted detector.
We apply the model to the test data X to get the outlier scores.
y_test_scores = clf2.decision_function(X) # outlier scores
y_test_scores = pd.Series(y_test_scores)

Plotting the Scores

In [185]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_test_scores, bins =150) # arguments are passed to np.histogram
plt.title("Histogram for Model iForest Clf2, Anomaly Scores, with 150 bins")
plt.xlabel('Distance')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range 0.2 and then re-plot

In [186]: y_test_scores_small = y_test_scores[y_test_scores[:,] < 0.2]
#y_test_scores_small

In [187]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_test_scores_small, bins = 'auto') # arguments are passed to np.histogram
plt.title("Histogram for Model iForest Clf2, Anomaly Scores, with auto bins")
plt.xlabel('Distance')
plt.show()

Build a 3 cluster model

In [188]: df_test = pd.DataFrame(X)
df_test['distance'] = y_test_scores

df_test['cluster'] = (np.where(df_test['distance'] > 0.10, 3,
 (np.where(df_test['distance'] > 0.05, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [189]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

I will provde the description and business insight later below, when I aggregate with the 'Average' method

Summary statistics

In [190]: # Now let's show the summary statistics:
df_test.groupby('cluster').mean()

5.2.3. Model 3

In [191]: X = StandardScaler().fit_transform(df1)
X = pd.DataFrame(data = X, columns = num_variables)

In [192]: X_train = X.iloc[:130452,:]

In [193]: # Here, I will take the 60% of the length of train as the max samples

clf3 = IForest(behaviour="new", max_samples=int(round((len(X_train)*0.6),0)))
clf3.fit(X_train)

For the purpose of testing the trained set, I will use the entire dataset, which X. This is because even the train dataset containes outliers, and I need
to idenify outliers in the entire dataset.

In [194]: # clf.decision_function: Predict raw anomaly score of X using the fitted detector.
We apply the model to the test data X to get the outlier scores.
y_test_scores = clf3.decision_function(X) # outlier scores
y_test_scores = pd.Series(y_test_scores)

Plotting the Scores

In [195]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_test_scores, bins =150) # arguments are passed to np.histogram
plt.title("Histogram for Model iForest Clf3, Anomaly Scores, with 150 bins")
plt.xlabel('Distance')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range at 0.2 and then re-plot

In [196]: y_test_scores_small = y_test_scores[y_test_scores[:,] < 0.2]
#y_test_scores_small

In [197]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_test_scores_small, bins = 'auto') # arguments are passed to np.histogram
plt.title("Histogram for Model iForest Clf3, Anomaly Scores, with auto bins")
plt.xlabel('Distance')
plt.show()

Build a 3 cluster model

In [198]: df_test = pd.DataFrame(X)
df_test['distance'] = y_test_scores

df_test['cluster'] = (np.where(df_test['distance'] > 0.10, 3,
 (np.where(df_test['distance'] > 0.05, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [199]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

I will provde the description and business insight later below, when I aggregate with the 'Average' method

Summary statistics

In [200]: # Now let's show the summary statistics:
df_test.groupby('cluster').mean()

Note:
Outlier Detection Models Are Prone and sensitive to Outliers/Anomalies

Also, Outlier detection models tend to be very sensitive to outliers. In our case the unsupervised k-NN model can easily commit overfitting. We need to produce
stable models.

Achieve Model Stability by Aggregating Multiple Models
The solution is to train multiple models then aggregate the scores. By aggregating multiple models, the chance of overfitting is greatly reduced and the
prediction accuracy will be improved. The PyOD module offers four methods to aggregate the outcome. I will use the 'Average' method for my analysis.

5.2.4. Aggregate by 'Average' Method to get better results

In [201]: new_X = X.drop(columns = ['distance', 'cluster'])

In [202]: # Put all the predictions in a data frame
train_scores = pd.DataFrame({'clf1': clf1.decision_scores_,
 'clf2': clf2.decision_scores_,
 'clf3': clf3.decision_scores_
 })

test_scores = pd.DataFrame({'clf1': clf1.decision_function(new_X),
 'clf2': clf2.decision_function(new_X),
 'clf3': clf3.decision_function(new_X)
 })

In [203]: # Although we did standardization before, it was for the variables.
Now we do the standardization for the decision scores

train_scores_norm, test_scores_norm = standardizer(train_scores,test_scores)

Average Method

In [204]: y_by_average = average(test_scores_norm)
y_by_average[1:10]

Plotting the scores

In [205]: fig, ax = plt.subplots(figsize= (20,6))
plt.plot(y_by_average);
plt.axhline(y=clf3.threshold_, c='r', ls='dotted', label='threshoold');
plt.title('Anomaly Distances with automatically calculated threshold, for Model iForest Clf3');

In [206]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_by_average, bins=200) # arguments are passed to np.histogram
plt.title("Combination by average, for model iForest, with 200 bins")
plt.xlabel('Distances')
plt.show()

In the above graph, it is very difficult to see the distribution, as the range is very vast. So, I will cut the range at 8.0 and then re-plot

In [207]: y_by_average_small = y_by_average[y_by_average[:,] < 8.0]
y_by_average_small

In [208]: fig, ax = plt.subplots(figsize= (20,6))
plt.hist(y_by_average_small, bins = 'auto') # arguments are passed to np.histogram
plt.title("Combination by average, for model iForest, with auto bins")
plt.xlabel('Distances')
plt.show()

Build a 3 cluster model

In [209]: df_test = pd.DataFrame(X)
df_test['distance'] = y_by_average

df_test['cluster'] = (np.where(df_test['distance'] > 6.0, 3,
 (np.where(df_test['distance'] > 3.0, 2, 1))))

df_test['cluster'].value_counts()

Percentage of Data points in each cluster

In [210]: temp = pd.DataFrame()

temp['Percentage of total'] = (df_test['cluster'].value_counts() / df_test['cluster'].value_counts().sum()) * 100
temp['Cluster'] = ['1','2','3']

temp

In [211]: fig = px.bar(temp, x = 'Cluster', y = 'Percentage of total', color = 'Cluster',
 width=600, height=400,
 title = "Percentage of total in each cluster")
fig.show()

Final Summary statistics

In [212]: cluster_df = df_test.groupby('cluster').mean().reset_index()
cluster_df

In [213]: cluster_df.plot(x = 'cluster', y = 'Out_of_Pocket_Payment', color = 'green', kind = 'bar')

In [214]: cluster_df.plot(x = 'cluster', y ='Total_Disc_by_Pop' , color = 'red', kind ='bar')

In [215]: cluster_df.plot(x = 'cluster', y ='distance' , color = 'blue', kind ='bar')

Observation:

From the above 3 cluster analysis, the following can be explained:

A. Clusters 2, and 3 have a very small percentage of total data in their cluster pool. So, there are two possible options for these clusters:

Either they are true anomalies
They are provider of rare services, or very expensive operations, surgeries or services, performed only by very limited number of providers in the country.

B. Cluster 3 has a roughly 0.24%, and Cluster 2 has roughly 1.64% of the data in its cluster pool. These are the critical cut-off points, as I believe anything near
or less than 10% of the entire data, represents a different but normal cluster group.

C. The other clusters which have over 10% of the total data in their cluster pools, seem normal and fine. The differences lie probably due to state or the drg
definition or the state. But they are not not likely to be a cause for anomalies.

ANOMALIES or SUSPICIOUS clusters:
The above table gives a comprehensive view of the means, as per the different clusters which is useful to identofy anomalies.

From the final 6 features used for clustering, I generated 3 different clusters using the aggregated average method. The following are the key takeaways for
anomalies and suspicious clusters:

Total Discharges by Population

1. Clusters 3 has an extremely high value, away from the normal mean of other clusters. Cluster 3 has a mean almost 4-5 times the mean of other clusters,
which is very a big concern, even though this cluster has like 0.24% of the total data points.

Average Total Payments

1. Cluster 2 and 3 have extremely high values. Cluster 3, which has around 0.24% of the total data points, has a mean of 4, which is over 4-5 times the
means of the other clusters. Now, cluster 2 also has double the mean, but this might just be the expensive hospitals, or other life saving treatments.
Compared to the cluster 1, cluster 3 emerges anomalous.

Out of Pocket Payment

1. Cluster 3 has extremely high values. Cluster 3, which has around 0.24% of the total data points, has a mean of over 8, which is over 6-7 times the means
of the other clusters.

Median Score

1. Cluster 3 has the highest mean amongst all other clusters means, 3-4 times higher than all other clusters.

From the above observations, it is clear that there is 1 distinct cluster, which has a very high cluster mean for a lot of variables, if not all, and emerges as
suspicious cases or has anomalies. This is cluster 3.

Combining these results with the Percentage results obtained in the previous step, I can concule that Clusters 3 issuspicious and need further investigation.

BUSINESS INSIGHTS

I performed the Autoencoder clustering for the data, and also used the 'Average' aggregate method to build a stable model. On building the average model, I
found that the original model I built was stable and had good insights.

My analysis gave me 3 clusters, and out of those 3, Cluster 3 seems to be the one which has a lot a potential anomalies, and is suspicious because the means
for the variables, as explained above, are far away from the means of the variables of other clusters.

Further, on evaluating the distance for all the clusters, which gives us insights about the clusters which are anomalies, as the anomalies might have a very
very high score comapred to others, I see that cluster 3 has a score almost 5-6 times higher than all other clusters. So, I can safely conclude that Cluster 3 is
highly suspicious.

So, I would pass on the 395 specific entries of the Cluster 3 to the relevant authorities, and call for further investigation on each of the entries, to understand of
they are true anomalies. I will provide all the reasoning as I have highlighted above, as to the differences in the means, and walk through the process I have
done.

Conclusion:
Autoencoder and iForest are are very good models to identify cluster who might be suspicious or have anomalies. For performing the analysis, I used 3 clusters
as the optimum number of clusters. An important observation was that:

Even though some clusters have avery high in cluster mean, but they contaian a good portion of the total data. Hence we cannot call that cluster as
suspicious. So, finally, per my anslysis, I can say that clusters 4 and maybe 3, in both models were suspicious, as they contained fewer than 5% of the
total data points, and also, they had high in-cluster means for a lot of variables, which makes them very suspicious.

 verbose=0)

Out[174]: 0 -0.017765
1 -0.020314
2 -0.006392
3 -0.010510
4 -0.017119
dtype: float64

Out[178]: 1 159153
2 2765
3 1147
Name: cluster, dtype: int64

Out[179]:
Percentage of total Cluster

1 97.600957 1

2 1.695643 2

3 0.703400 3

Out[180]:
Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop distance

cluster

1 -0.057836 0.025343 0.001673 -0.077345 -0.040763 -0.023621 -0.038729

2 2.096976 -0.720663 -0.028560 2.121338 1.198851 0.379876 0.069414

3 2.970079 -1.779165 -0.163358 5.618339 2.766047 2.361793 0.151507

Out[183]: IForest(behaviour='new', bootstrap=False, contamination=0.1, max_features=1.0,
 max_samples=104362, n_estimators=100, n_jobs=1, random_state=None,
 verbose=0)

Out[188]: 1 159052
2 2742
3 1271
Name: cluster, dtype: int64

Out[189]:
Percentage of total Cluster

1 97.539018 1

2 1.681538 2

3 0.779444 3

Out[190]:
Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop distance

cluster

1 -0.061432 0.022489 -0.003829 -0.076136 -0.043942 -0.024892 -0.038746

2 2.140488 -0.542618 0.195285 1.962936 1.230469 0.357060 0.069204

3 3.069807 -1.643697 0.057894 5.292899 2.844308 2.344668 0.152862

Out[193]: IForest(behaviour='new', bootstrap=False, contamination=0.1, max_features=1.0,
 max_samples=78271, n_estimators=100, n_jobs=1, random_state=None,
 verbose=0)

Out[198]: 1 158462
2 3137
3 1466
Name: cluster, dtype: int64

Out[199]:
Percentage of total Cluster

1 97.177199 1

2 1.923773 2

3 0.899028 3

Out[200]:
Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop distance

cluster

1 -0.064011 0.030870 0.001659 -0.087325 -0.042281 -0.025390 -0.042233

2 1.989104 -0.701649 -0.035798 2.007262 1.030548 0.209914 0.069865

3 2.662647 -1.835372 -0.102721 5.143884 2.364976 2.295209 0.151936

Out[204]: array([0.43867527, 0.83656159, 0.83254772, 0.51393274, 0.67880553,
 0.70478619, 1.34119988, 0.59001519, 0.90650996])

Out[207]: array([0.58351696, 0.43867527, 0.83656159, ..., -0.45167965,
 0.4361085 , 0.29024326])

Out[209]: 1 159847
2 2801
3 417
Name: cluster, dtype: int64

Out[210]:
Percentage of total Cluster

1 98.026554 1

2 1.717720 2

3 0.255726 3

0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100 Cluster
1
2
3

Percentage of total in each cluster

Cluster

Pe
rc

en
ta

ge
 o

f
to

ta
l

Out[212]:
cluster Average_Total_Payments Medicare_%_Paid Medicare_%_Paid_State Out_of_Pocket_Payment Median_Score Total_Disc_by_Pop distance

0 1 -0.049847 0.023043 0.000223 -0.070466 -0.037012 -0.023717 -0.083861

1 2 2.260479 -0.966112 -0.012421 2.769039 1.494202 0.710808 3.937379

2 3 3.924005 -2.343696 -0.002039 8.411870 4.150888 4.316983 7.682231

Out[213]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7e9e5bc250>

Out[214]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eadb8ad90>

Out[215]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7e9db5af50>

